Основу пзу составляют микросхемы памяти. Подключение внешних микросхем озу и пзу в схемах на микроконтроллере. Постоянные запоминающие устройства

3.1.Микросхемы памяти

Преимущество памяти, изображенной на рис. 3.28, состоит в том, что подобная структура применима при разработке памяти большого объема. Мы нарисовали схему 4x3 (для 4 слов по 3 бита каждое). Чтобы расширить ее до размеров 4x8, нужно добавить еще 5 колонок триггеров по 4 триггера в каждой, а также 5 входных и 5 выходных линий. Чтобы перейти от размера 4x3 к размеру 8x3, мы должны добавить еще четыре ряда триггеров по три триггера в каждом, а также адресную линию А2. При такой структуре число слов в памяти должно быть степенью двойки для максимальной эффективности, а число битов в слове может быть любым. Поскольку технология изготовления интегральных схем хорошо подходит для

производства микросхем с внутренней структурой повторяемой плоской поверхности, микросхемы памяти являются идеальным применением для этого. С развитием технологии число битов, которое можно вместить в одной микросхеме, постоянно увеличивается, обычно в два раза каждые 18 месяцев (закон Мура). С появлением больших микросхем маленькие микросхемы не всегда устаревают из-за компромиссов между преимуществами емкости, скорости, мощности, цены и сопряжения. Обычно самые большие современные микросхемы пользуются огромным спросом и, следовательно, стоят гораздо дороже за 1 бит, чем микросхемы небольшого размера.

При любом объеме памяти существует несколько различных способов орга-

низации микросхемы. На рис. 3.30 показаны две возможные структуры микросхемы в 4 Мбит: 512 Кх8 и 4096 Kxl. (Размеры микросхем памяти обычно даются в битах, а не в байтах, поэтому здесь мы будем придерживаться этого соглашения.) На рис. 3.30, а можно видеть 19 адресных линий для обращения к одному из 219 байтов и 8 линий данных для загрузки или хранения выбранного байта.

Сделаем небольшое замечание по поводу терминологии. На одних выводах

высокое напряжение вызывает какое-либо действие, на других - низкое напряжение. Чтобы избежать путаницы, мы будем употреблять термин «установить сигнал»,когда вызывается какое-то действие, вместо того чтобы говорить, что напряжение повышается или понижается. Таким образом, для одних выводов установка сигнала значит установку на 1, а для других - установку на 0. Названия выводов, которые устанавливаются на 0, содержат сверху черту. Сигнал CS устанавливается на 1, а сигнал CS - на 0. Противоположный термин - «сбросить».

А теперь вернемся к нашей микросхеме. Поскольку обычно компьютер содержит много микросхем памяти, нужен сигнал для выбора необходимой микросхемы, такой, чтобы нужная нам микросхема реагировала на вызов, а остальные нет.

Сигнал CS (Chip Select - выбор элемента памяти) используется именно для этой цели. Он устанавливается, чтобы запустить микросхему. Кроме того, нужен способ отличия считывания от записи. Сигнал WE (Write Enable - разрешение записи) используется для указания того, что данные должны записываться, а не считываться. Наконец, сигнал (Ж (Output Enable - разрешение выдачи выходных сигналов) устанавливается для выдачи выходных сигналов. Когда этого сигнала нет, выход отсоединен от остальной части схемы. На рис. 3.30, б используется другая схема адресации. Микросхема представляет собой матрицу 2048x2048 однобитных ячеек, что составляет 4 Мбит. Чтобы обратиться к микросхеме, сначала нужно выбрать строку. Для этого И-битный номер этой строки подается на адресные выводы. Затем устанавливается сигнал RAS (Row Address Strobe - строб адреса строки). После этого на адресные выводы подается номер столбца и устанавливается сигнал CAS (Column Address Strobe - строб адреса столбца). Микросхема реагирует на сигнал, принимая или выдавая 1 бит данных.

Большие микросхемы памяти часто производятся в виде матриц mxn, обращение к которым происходит по строке и столбцу. Такая организация памяти сокращает число необходимых выводов, но, с другой стороны, замедляет обращение к микросхеме, поскольку требуется два цикла адресации: один для строки, а другой для столбца. Чтобы ускорить этот процесс, в некоторых микросхемах можно вызывать адрес ряда, а затем несколько адресов столбцов для доступа к последовательным битам ряда.

Много лет назад самые большие микросхемы памяти обычно были устроены

так, как показано на рис. 3.30, б. Поскольку слова выросли от 8 до 32 битов и выше, использовать подобные микросхемы стало неудобно. Чтобы из микросхем 4096 Kxl построить память с 32-битными словами, требуется 32 микросхемы, работающие параллельно. Эти 32 микросхемы имеют общий объем, по крайней мере, 16 Мбайт. Если использовать микросхемы 512 Кх8, то потребуется всего 4 микросхемы, но при этом объем памяти будет составлять 2 Мбайт. Чтобы избежать наличия 32 микросхем, большинство производителей выпускают семейства микросхем с длиной слов 1,4, 8 и 16 битов.

3.2.ОЗУ и ПЗУ

Все виды памяти, которые мы рассматривали до сих пор, имеют одно общее свойство: в них можно и записывать информацию, и считывать ее. Такая память называется ОЗУ (оперативное запоминающее устройство). Существует два типа ОЗУ: статическое и динамическое. Статическое ОЗУ конструируется с использованием D-триггеров. Информация в ОЗУ сохраняется на протяжении всего времени, пока к нему подается питание: секунды, минуты, часы и даже дни. Статическое ОЗУ работает очень быстро. Обычно время доступа составляет несколько наносекунд. По этой причине статическое ОЗУ часто используется в качестве кэш-памяти второго уровня.

В динамическом ОЗУ, напротив, триггеры не используются. Динамическое

ОЗУ представляет собой массив ячеек, каждая из которых содержит транзистор и крошечный конденсатор. Конденсаторы могут быть заряженными и разряженными, что позволяет хранить нули и единицы. Поскольку электрический заряд имеет тенденцию исчезать, каждый бит в динамическом ОЗУ должен обновляться (перезаряжаться) каждые несколько миллисекунд, чтобы предотвратить утечку данных. Поскольку об обновлении должна заботиться внешняя логика, динамическое ОЗУ требует более сложного сопряжения, чем статическое, хотя этот недостаток компенсируется большим объемом.

Поскольку динамическому ОЗУ нужен только 1 транзистор и 1 конденсатор на бит (статическому ОЗУ требуется в лучшем случае 6 транзисторов на бит), динамическое ОЗУ имеет очень высокую плотность записи (много битов на одну микросхему). По этой причине основная память почти всегда строится на основе динамических ОЗУ. Однако динамические ОЗУ работают очень медленно (время доступа занимает десятки наносекунд). Таким образом, сочетание кэш-памяти на основе статического ОЗУ и основной памяти на основе динамического ОЗУ соединяет в себе преимущества обоих устройств.

Существует несколько типов динамических ОЗУ. Самый древний тип, кото-

рый все еще используется, - FPM (Fast Page Mode - быстрый постраничный режим). Это ОЗУ представляет собой матрицу битов. Аппаратное обеспечение представляет адрес строки, а затем - адреса столбцов (мы описывали этот процесс, когда говорили об устройстве памяти, показанном на рис. 3.30, 6).

FPM постепенно замещается EDO1 (Extended Data Output - память с расши-

ренными возможностями вывода), которая позволяет обращаться к памяти еще до того, как закончилось предыдущее обращение. Такой конвейерный режим не ускоряет доступ к памяти, но зато увеличивает пропускную способность, выдавая больше слов в секунду. И FPM, и EDO являются асинхронными. В отличие от них так называемое синхронное динамическое ОЗУ управляется одним синхронизирующим сигналом. Данное устройство представляет собой гибрид статического и динамического ОЗУ. Синхронное динамическое ОЗУ часто используется при производстве кэш-памяти большого объема. Возможно, данная технология в будущем станет наиболее

предпочтительной и в изготовлении основной памяти.

ОЗУ - не единственный тип микросхем памяти. Во многих случаях данные

должны сохраняться, даже если питание отключено (например, если речь идет об игрушках, различных приборах и машинах). Более того, после установки ни программы, ни данные не должны изменяться. Эти требования привели к появлению ПЗУ (постоянных запоминающих устройств), которые не позволяют изменять и стирать хранящуюся в них информацию (ни умышленно, ни случайно). Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем открытые (или закрытые) части поверхности вытравливаются.

Единственный способ изменить программу в ПЗУ - поменять целую микросхему. ПЗУ стоят гораздо дешевле ОЗУ, если заказывать их большими партиями, чтобы оплатить расходы на изготовление трафарета. Однако они не допускают изменений после выпуска с производства, а между подачей заказа на ПЗУ и его выполнением может пройти несколько недель. Чтобы компаниям было проще разрабатывать новые устройства, основанные на ПЗУ, были выпущены программируемые ПЗУ. В отличие от обычных ПЗУ, их можно программировать в условиях эксплуатации, что позволяет сократить время выполнения заказа. Многие программируемые ПЗУ содержат массив крошечных плавких перемычек. Можно пережечь определенную перемычку, если выбрать нужную строку и нужный столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

Следующая разработка этой линии - стираемое программируемое ПЗУ, которое можно не только программировать в условиях эксплуатации, но и стирать с него информацию. Если кварцевое окно в данном ПЗУ подвергать воздействию сильного ультрафиолетового света в течение 15 минут, все биты установятся на 1.

Если нужно сделать много изменений во время одного этапа проектирования, стираемые ПЗУ гораздо экономичнее, чем обычные программируемые ПЗУ, поскольку их можно использовать многократно. Стираемые программируемые ПЗУ обычно устроены так же, как статические ОЗУ. Например, микросхема 27С040 имеет структуру, которая показана на рис. 3.30, а, а такая структура типична для статического ОЗУ.

Следующий этап - электронно-перепрограммируемое ПЗУ, с которого мож-

но стирать информацию, прилагая к нему импульсы, и которое не нужно для этого помещать в специальную камеру, чтобы подвергнуть воздействию ультрафиолетовых лучей. Кроме того, чтобы перепрограммировать данное устройство, его не нужно вставлять в специальный аппарат для программирования, в отличие от стираемого программируемого ПЗУ, Но с другой стороны, самые большие электронно-перепрограммируемые ПЗУ в 64 раза меньше обычных стираемых ПЗУ, и работают они в два раза медленнее. Электронно-перепрограммируемые ПЗУ не могут конкурировать с динамическими и статическими ОЗУ, поскольку они работают в 10 раз медленнее, их емкость в 100 раз меньше, и они стоят гораздо дороже. Они

используются только в тех ситуациях, когда необходимо сохранение информации при выключении питания.

Более современный тип электронно-перепрограммируемого ПЗУ - флэш-память. В отличие от стираемого ПЗУ, которое стирается под воздействием ультрафиолетовых лучей, и от электронно-программируемого ПЗУ, которое стирается по байтам, флэш-память стирается и записывается блоками. Как и любое электронно-перепрограммируемое ПЗУ, флэш-память можно стирать, не вынимая ее из микросхемы. Многие изготовители производят небольшие печатные платы, содержащие десятки мегабайтов флэш-памяти. Они используются для хранения изображений в цифровых камерах и для других целей. Возможно, когда-нибудь флэш-память вытеснит диски, что будет грандиозным шагом вперед, учитывая время доступа в 100 не. Основной технической проблемой в данный момент является то, что флэш-память изнашивается после 10 000 стираний, а диски могут служить годами независимо от того, сколько раз они перезаписывались. Краткое описание

различных типов памяти дано в табл. 3.2.

Лекция 8. Микросхемы управления и сопряжения.

1. Микросхемы процессора.

2. Шины и принципы их работы.

3. Средства сопряжения.

В микропроцессорных системах используется два вида запоминающих устройств (ЗУ): оперативные (ОЗУ) и постоянные (ПЗУ). В ОЗУ основной режим работы - это запись и считывание информации. Информация все время обновляется, хранится не долго и при выключении аппаратуры теряется. В ПЗУ основной режим работы - только считывание информации. Запись происходит при изготовлении микросхемы или при установке ее в аппаратуру.

Различают разновидности ПЗУ: программируемые (ППЗУ) и репрограммируемые (РПЗУ). Программируемые ПЗУ позволяют пользователю самостоятельно при помощи специальных приспособлений однократно записать информацию в микросхему. Такая запись программ производится обычно после их проверки и отладки. Изменить информацию после ее занесения в микросхему невозможно.

Репрограммируемые ПЗУ позволяют многократно стирать и заново заносить информацию. При этом может использоваться электрическое (ЭРПЗУ) или ультрафиолетовое стирание (РПЗУ - УФ).

В зависимости от способа организации памяти различают статические и динамические ЗУ. Статические ЗУ образованы на основе триггерных ячеек. Динамические ЗУ допускают изменение или передвижение данных при хранении, например, запоминание на конденсаторах, требующее периодического восстановления заряда. Динамические ЗУ не позволяют производить считывание в произвольный момент времени, но они обладают очень высокой плотностью записи информации и малым потреблением электроэнергии.

Для изготовления микросхем памяти используется ТТЛ и МОП технология и их разновидности.

На логических схемах ОЗУ обозначается RAM (динамическое ОЗУ-RAM) - Random Acces Memory - память с произвольной выборкой.

ПЗУ обозначается ROM (ППЗУ – PROM, РПЗУ – RPROM) - Read Only Memory - память только со считыванием.

Статические ОЗУ . Промышленностью выпускается большое количество различных микросхем оперативной памяти в различных сериях интегральных схем: К500, К1500, К537, К541, К565.

В качестве примера рассмотрим широко используемую в качестве статического ОЗУ микросхему К537РУЗ - рис.6.6. Она выполнена по КМОП технологии, но по уровню сигналов стыкуется с микросхемами ТТЛ типа. Объем памяти составляет 4К, т.е. 4096 триггерных ячеек. Время выборки не превышает 0,1 мкс, а время восстановления - 70 нс.

Внутри микросхема содержит матрицу 64 х 64 запоминающих элементов, дешифраторы адреса строк и столбцов, усилители записи и считывания, схему управления. Обозначения входов микросхемы:

А 12-разрядный адрес ячейки памяти;

DO output - выход данных;

DI input-вход данных;

CS выбор микросхемы;

WE установка режима «запись - считывание».


Символ на правом обрезе условного обозначения микросхемы обозначает, что выход имеет третье высокоимпендансное состояние Z . Режим работы микросхемы в зависимости от состояния управляющих сигналов иллюстрируется следующей таблицей:

CS WE Di DO Режим
Di Z Запись
* DO Чтение
* * Z Хранение

Символ ◊ обозначает произвольное состояние входа.

Объединяя несколько таких микросхем, можно построить многоразрядное ЗУ на 64К слов.

Динамические ОЗУ содержатся в микросхемах серии К565. Емкость их составляет до 64К. Регенерация происходит через каждые 2 мс. Микросхема имеет 4 режима работы: запись, считывание, хранение, регенерация. Регенерация производится путем обращения к каждой ячейке памяти по сигналу RAS. Естественно, в то время, когда происходит регенерация, запись и считывание информации производить нельзя.

Постоянные ЗУ служат для хранения программ и другой постоянной информации. Микросхемы этого типа сохраняют информацию при выключении напряжения питания. Строятся на базе матрицы запоминающих элементов ТТЛ или МОП структуры. Запись информации в матрицу происходит одноразово при помощи специально изготавливаемого фотошаблона путем металлизации промежутков между элементами. Такой фотошаблон значительно дороже самой микросхемы и изготавливается при заказе большой партии микросхем. Микросхемы ПЗУ входят в состав серий интегральных схем: К500, К541, К568. К596, К1610. На рнс.6.10 приведена схема ПЗУ К568РЕЗ. В микросхеме может быть записана информация объемом 2 14 байт. Считывание нужного байта производится заданием кода адреса и сигнала CS выбора микросхемы.

Программируемые ПЗУ позволяют, задать состояние ячеек памяти не на заводе-изготовителе микросхем, а самим разработчиком микропроцессорной системы. Программирование микросхем ППЗУ происходит путем пережигания плавких вставок в цепях ячеек памяти от внешнего источника с помощью специального устройства - программатора. Такие ПЗУ входят в состав следующих серий микросхем: К500, К556, К537, К541.

Электрические репрограммируемые ПЗУ позволяют осуществить многократное программирование при сохранении памяти при отключении питания. Память сохраняется за счет сохранения заряда в МОП структуре. Длительность хранения информации в нормальных условиях эксплуатации составляет годы.

Количество циклов перепрограммирования может достигать 10 4 . При этом можно стереть или сменить всю информацию или только выборочно. Микросхемы ЭР ПЗУ входят в состав ряда серий интегральных схем: К505, К558,К1601.

РПЗУ с ультрафиолетовым стиранием наиболее распространены. В них снятие заряда с МОП структуры ячейки памяти происходит при ультрафиолетовом облучении кристалла через окошко в корпусе микросхемы. Облучение производят специальной ультрафиолетовой лампой в течение 30 минут.

Примером РПЗУ-УФ может служить микросхема К573РФ. Число циклов перепрограммирования этой микросхемы не менее 25, а время сохранения информации без электропитания не менее 25 × 10 3 часов.

Микросхемы этого типа требуют защиты от случайного воздействия световых потоков во время эксплуатации.


ЛИТЕРАТУРА

1. Забродин Ю.С. Промышленная электроника. - М.: Высшая школа, 1982

2. Исаков Ю.Л. и Др. Основы промышленной электроники. Библиотека инженера. - К.: Техника, 1976.

3. Горбачев В.Н., Чаплыгин Е.Е. Промышленная электроника. - М.: Высшая школа, 1988.

4. Криютафович А. К., Трнфонюк В.В. Основы промышленной электроники. - М.: Высшая школа, 1985.

5. Руденко B.C., Сенько В.И., Трифонюк В.Р. Основы промышленной электроники. - К.: Высшая школа, 1985.

6. Шило В.Л. Популярные цифровые микросхемы. - М.: Радио и связь, 1988.

7. Краснопрошнна А.А., Скаржепа В.А., Кравец П.И. Электроника и микросхемотехника. - К.: Вища школа, 1989.

8. Применение интегральных микросхем. Под ред.А.Уильямса. Перевод с англ. - М.: Мир. 19?".

9. Щербаков В.И., Грездов Г.И. Электронные схемы на операционных усилителях. - К.: Техника, 1983.

10. Гранитов В.И. Физика полупроводников и полупроводниковые приборы. - М.: Советское радио, 1977.

11. Самофалов К.Г., Викторов О.В., Кузняк А.К. Микропроцессоры. Библиотека

инженера.-К.: Техника, 1986.

12.МирскиП Г.Я, Микропроцессоры в измерительных приборах. - М.: Радио и связь. 1984.

13. Вершинин О.Е. Применение микропроцессоров для автоматизации технологических процессов. - Л.: Энергоатомнздат, 1986.

Все виды памяти, которые мы рассматривали до сих пор, имеют одно общее свой­ство: в них можно и записывать информацию, и считывать ее. Такая память назы­вается ОЗУ (оперативное запоминающее устройство). Существует два типа ОЗУ: статическое и динамическое. Статическое ОЗУ конструируется с использовани­ем D-триггеров. Информация в ОЗУ сохраняется на протяжении всего времени, пока к нему подается питание: секунды, минуты, часы и даже дни. Статическое ОЗУ работает очень быстро. Обычно время доступа составляет несколько нано­секунд. По этой причине статическое ОЗУ часто используется в качестве кэш-па­мяти второго уровня.

В динамическом ОЗУ, напротив, триггеры не используются. Динамическое ОЗУ представляет собой массив ячеек, каждая из которых содержит транзистор и крошечный конденсатор. Конденсаторы могут быть заряженными и разряженны­ми, что позволяет хранить нули и единицы. Поскольку электрический заряд имеет тенденцию исчезать, каждый бит в динамическом ОЗУ должен обновляться (пе­резаряжаться) каждые несколько миллисекунд, чтобы предотвратить утечку дан­ных. Поскольку об обновлении должна заботиться внешняя логика, динамическое ОЗУ требует более сложного сопряжения, чем статическое, хотя этот недостаток компенсируется большим объемом.

Поскольку динамическому ОЗУ нужен только 1 транзистор и 1 конденсатор на бит (статическому ОЗУ требуется в лучшем случае б транзисторов на бит), дина­мическое ОЗУ имеет очень высокую плотность записи (много битов на одну микро­схему). По этой причине основная память почти всегда строится на основе динами­ческих ОЗУ. Однако динамические ОЗУ работают очень медленно (время доступа занимает десятки наносекунд). Таким образом, сочетание кэш-памяти на основе статического ОЗУ и основной памяти на основе динамического ОЗУ соединяет в себе преимущества обоих устройств.

Существует несколько типов динамических ОЗУ. Самый древний тип, кото­рый все еще используется, - FPM (Fast Page Mode - быстрый постраничный


Память 175

режим)-. Это ОЗУ представляет собой матрицу битов. Аппаратное обеспечение представляет адрес строки, а затем - адреса столбцов (мы описывали этот процесс, когда говорили об устройстве памяти, показанном на рис. 3.30, 6).

FPM постепенно замещается EDO 1 (Extended Data Output - память с расши­ренными возможностями вывода), которая позволяет обращаться к памяти еще до того, как закончилось предыдущее обращение. Такой конвейерный режим не ускоряет доступ к памяти, но зато увеличивает пропускную способность, выдавая больше слов в секунду.

И FPM, и EDO являются асинхронными. В отличие от них так называемое син­хронное динамическое ОЗУ управляется одним синхронизирующим сигналом. Данное устройство представляет собой гибрид статического и динамического ОЗУ. Синхронное динамическое ОЗУ часто используется при производстве кэш-памя­ти большого объема. Возможно, данная технология в будущем станет наиболее предпочтительной и в изготовлении основной памяти.



ОЗУ - не единственный тип микросхем памяти. Во многих случаях данные должны сохраняться, даже если питание отключено (например, если речь идет об игрушках, различных приборах и машинах). Более того, после установки ни про­граммы, ни данные не должны изменяться. Эти требования привели к появлению ПЗУ (постоянных запоминающих устройств), которые не позволяют изменять и стирать хранящуюся в них информацию (ни умышленно, ни случайно). Данные записываются в ПЗУ в процессе производства. Для этого изготавливается трафарет с определенным набором битов, который накладывается на фоточувствительный материал, а затем открытые (или закрытые) части поверхности вытравливаются. Единственный способ изменить программу в ПЗУ - поменять целую микросхему.

ПЗУ стоят гораздо дешевле ОЗУ, если заказывать их большими партиями, что­бы оплатить расходы на изготовление трафарета. Однако они не допускают измене­ний после выпуска с производства, а между подачей заказа на ПЗУ и его выполне­нием может пройти несколько недель. Чтобы компаниям было проще разрабатывать новые устройства, основанные на ПЗУ, были выпущены программируемые ПЗУ. В отличие от обычных ПЗУ, их можно программировать в условиях эксплуата­ции, что позволяет сократить время выполнения заказа. Многие программируе­мые ПЗУ содержат массив крошечных плавких перемычек. Можно пережечь определенную перемычку, если выбрать нужную строку и нужный столбец, а затем приложить высокое напряжение к определенному выводу микросхемы.

Следующая разработка этой линии - стираемое программируемое ПЗУ, ко­торое можно не только программировать в условиях эксплуатации, но и стирать с него информацию. Если кварцевое окно в данном ПЗУ подвергать воздействию сильного ультрафиолетового света в течение 15 минут, все биты установятся на 1. Если нужно сделать много изменений во время одного этапа проектирования, сти­раемые ПЗУ гораздо экономичнее, чем обычные программируемые ПЗУ, поскольку их можно использовать многократно. Стираемые программируемые ПЗУ обычно устроены так же, как статические ОЗУ. Например, микросхема 27С040 имеет структуру, которая показана на рис. 3.30, а, а такая структура типична для стати­ческого ОЗУ.

Динамическая намять типа EDO вытеснила обычную динамическую память, работающую н режиме FPM, в середине 90-х годов. - Примеч. научи, ред.


Следующий этап - электронно-перепрограммируемое ПЗУ, с которого мож­но стирать информацию, прилагая к нему импульсы, и которое не нужно для этого помещать в специальную камеру, чтобы подвергнуть воздействию ультрафиоле­товых лучей. Кроме того, чтобы перепрограммировать данное устройство, его не нужно вставлять в специальный аппарат для программирования, в отличие от сти­раемого программируемого ПЗУ. Но с другой стороны, самые большие электрон­но-перепрограммируемые ПЗУ в 64 раза меньше обычных стираемых ПЗУ, и ра­ботают они в два раза медленнее. Электронно-перепрограммируемые ПЗУ не могут конкурировать с динамическими и статическими ОЗУ, поскольку они работают в 10 раз медленнее, их емкость в 100 раз меньше и они стоят гораздо дороже. Они используются только в тех ситуациях, когда необходимо сохранение информации при выключении питания.

Более современный тип электронно-перепрограммируемого ПЗУ - флэш-па­мять. В отличие от стираемого ПЗУ, которое стирается под воздействием ультра­фиолетовых лучей, и от электронно-программируемого ПЗУ, которое стирается по байтам, флэш-память стирается и записывается блоками. Как и любое элект­ронно-перепрограммируемое ПЗУ, флэш-память можно стирать, не вынимая ее из микросхемы. Многие изготовители производят небольшие печатные платы, со­держащие десятки мегабайтов флэш-памяти. Они используются для хранения изоб­ражений в цифровых камерах и для других целей. Возможно, когда-нибудь флэш-память вытеснит диски, что будет грандиозным шагом вперед, учитывая время доступа в 100 не. Основной технической проблемой в данный момент является то, что флэш-память изнашивается после 10 000 стираний, а диски могут служить го­дами независимо от того, сколько раз они перезаписывались. Краткое описание различных типов памяти дано в табл. 3.2.

Таблица 3.2. Характеристики различных видов памяти

Тип запо- Категория Стирание Изменение Энерго- Применение
минающего записи информации зависи-
устройства по байтам мость
Статическое Чтение/ Электрическое Да Да Кэш-память
ОЗУ (SRAM) запись второго уровня
Динамическое Чтение/ Электрическое Да Да Основная память
ОЗУ (DRAM) запись
ПЗУ(ЯОМ) Только Невозможно Нет Нет Устройства
чтение большого размера
Програм- Только Невозможно Нет Нет Устройства
мируемое чтение небольшого
ПЗУ (PROM) размера
Стираемое Преиму- Ультра- Нет Нет Моделирование
програм- щественно фиолетовый устройств
мируемое чтение свет
ПЗУ(ЕРРЮМ)
Электронно- Преиму- Электрическое Да Нет Моделирование
перепрограм- щественно устройств
мируемое ПЗУ чтение
(EEPROM)
флэш-память Чтение/ Электрическое Нет Нет Цифровые камеры
(Flash) запись

Микросхемы процессоров и шины 177

Микросхемы процессоров и шины

Поскольку нам уже известна некоторая информация о МИС, СИС и микросхе­мах памяти, то мы можем сложить все составные части вместе и изучать целые системы. В этом разделе сначала мы рассмотрим процессоры на цифровом ло­гическом уровне, включая цоколевку (то есть значение сигналов на различных выводах). Поскольку центральные процессоры тесно связаны с шинами, которые они используют, мы также кратко изложим основные принципы разработки шин. Б следующих разделах мы подробно опишем примеры центральных процессоров и шин для них.

Микросхемы процессоров

Все современные процессоры помещаются на одной микросхеме. Это делает впол­не определенным их взаимодействие с остальными частями системы. Каждая мик­росхема процессора содержит набор выводов, через которые происходит обмен информацией с внешним миром. Одни выводы передают сигналы от централь­ного процессора, другие принимают сигналы от других компонентов, третьи дела­ют и то и другое. Изучив функции всех выводов, мы сможем узнать, как процессор взаимодействует с памятью и устройствами ввода-вывода на цифровом логичес­ком уровне.

Выводы микросхемы центрального процессора можно подразделить на три типа: адресные, информационные и управляющие. Эти выводы связаны с соответству­ющими выводами на микросхемах памяти и микросхемах устройств ввода-вывода через набор параллельных проводов (так называемую шину). Чтобы вызвать ко­манду, центральный процессор сначала посылает в память адрес этой команды по адресным выводам. Затем он запускает одну или несколько линий управления, чтобы сообщить памяти, что ему нужно, например, прочитать слово. Память выда­ет ответ, помещая требуемое слово на информационные выводы процессора и по­сылая сигнал о том, что это сделано. Когда центральный процессор получает дан­ный сигнал, он принимает слово и выполняет вызванную команду. ■ Команда может требовать чтения или записи слов, содержащих данные. В этом случае весь процесс повторяется для каждого дополнительного слова. Как проис­ходит процесс чтения и записи, мы подробно рассмотрим ниже. Важно понимать, что центральный процессор обменивается информацией с памятью и устройства­ми ввода-вывода, подавая сигналы на выводы и принимая сигналы на входы. Дру­гого способа обмена информацией не существует.

Число адресных выводов и число информационных выводов - два ключевых параметра, которые определяют производительность процессора. Микросхема, содержащая m адресных выводов, может обращаться к 2 т ячейкам памяти. Обыч­но m равно 16, 20, 32 или 64. Микросхема, содержащая п информационных выво­дов, может считывать или записывать n-битное слово за одну операцию. Обычно п равно 8, 16, 32, 36 или 64. Центральному процессору с 8 информационными выво­дами понадобится 4 операции, чтобы считать 32-битное слово, тогда как процес­сор, имеющий 32 информационных вывода, может сделать ту же работу в одну

Глава 3. Цифровой логический уровень


операцию. Следовательно, микросхема с 32 информационными выводами работа­ет гораздо быстрее, но и стоит гораздо дороже.

Кроме адресных и информационных выводов каждый процессор содержит вы­воды управления. Выводы управления регулируют и синхронизируют поток дан­ных к процессору и от него, а также выполняют другие разнообразные функции. Все процессоры содержат выводы для питания (обычно +3,3 В или +5 В), «земли» и синхронизирующего сигнала (меандра). Остальные выводы разнятся от процес­сора к процессору. Тем не менее выводы управления можно разделить на несколь­ко основных категорий:

1. Управление шиной.

2. Прерывание.

3. Арбитраж шины.

4. Состояние.

5. Разное.

Ниже мы кратко опишем каждую из этих категорий. Когда мы будем рассмат­ривать микросхемы Pentium II, UltraSPARC II и picojava II, мы дадим более по­дробную информацию. Схема типичного центрального процессора, в котором ис­пользуются эти типы сигналов, изображена на рис. 3.31.


ОЗУ (англ. RAM) и ПЗУ (англ. ROM) - это цифровые накопители информации. Их применяют, если внутренних ресурсов MK по тем или иным причинам недостаточно. Для сравнения, объём памяти данных MK составляет 0.5…8 Кбайт, объём памяти программ - 2…256 Кбайт. Подключить же к MK можно ещё одну или несколько внешних микросхем ОЗУ ёмкостью 32…512 Кбайт или флэш-ПЗУ ёмкостью 0.5…128 Мбайт. Увеличение вычислительных ресурсов налицо.

Обобщённые структурные схемы ОЗУ и ПЗУ во многом совпадают (Рис. 3.8). Базой служит прямоугольная матрица ячеек памяти, доступ к которой осуществляется через линии адреса AO…An, а чтение/запись - через двунаправленную шину данных I/OO…I/Ok. Многочисленные разновидности ОЗУ и ПЗУ отличаются друг от друга логикой формирования сигналов управления CS, WR, RD, а также наличием или отсутствием мультиплексирования адресных линий.

Рис. 3.8. Структурная схема ОЗУ (ПЗУ).

Внешние ПЗУ лучше использовать «низковольтные» электрически перезаписываемые (ключевое слово «Flash»). Напряжение программирования у них составляет 5 В в отличие от 12…27 В в старинных «высоковольтных» ПЗУ 27C256, КР573РФ6А, которые применять сейчас совместно с MK не имеет смысла.

Типовое время хранения информации в флэш-ПЗУ достигает 10…40 лет при 0.1…1 млн циклов перезаписи. Различают последовательные и параллельные флэш-ПЗУ. Первые из них малогабаритные, маловыводные, но они имеют низкую скорость доступа и невысокую ёмкость. Пример - серии 24Cxxx, 93Cxx. Для подключения таких ПЗУ к MK применяют двух или трёхпроводные интерфейсы PC, SPI. В противовес этому параллельные флэш-ПЗУ обладают большим объёмом памяти, хорошим быстродействием, но требуют для сопряжения с MK много выводов (два-три свободных 8-битных порта). Пример - серии 28Fxxx, 29Cxxx.

Внешние ОЗУ имеют высокую скорость записи и чтения, но информация в них теряется при выключении питания. Для сопряжения ОЗУ с MK используют обе линии портов. Иногда выгоднее их перевести в специальный режим «External RAM», при котором область внешнего ОЗУ включается в общую карту памяти. Поддерживает ли конкретный MK подобный режим, можно определить по специфическим названиям линий портов в его условном обозначении. Например, на Рис. 3.9 это «АР0»…«АР7» (шина данных/адреса), «А8»…«А15» (старшие разряды шины адреса), «ALE», «WR», «RD» (сигналы управления).

На Рис. 3.10, а…и приведены схемы подключения внешней памяти к MK.

а) микросхема DS1 (фирма Samsung) - это «интеллектуальное» перепрограммируемое ПЗУ с собственой системой команд. Применяется, в частности, в USB-накопителях;

Рис. 3.9. Расположение выводов и названия сигналов в MK Atmel ATmega8515.

б) 16-разрядная информация в динамическом ОЗУ DS1 (фирма OKI) передаётся/принимается через выводы «1/01»…«1/04» последовательно во времени четырьмя блоками;

Рис. ЗЛО. Схемы подключения внешней памяти к MK (продолжение):

в) шина адреса «А0»…«А18» и шина данных «Ю0»…«Ю7» статического ОЗУ DS1 (фирма Samsung) мультиплексируются регистрами DD1, DD2. По фронтам сигналов F1, F2 в регистрах за два раза защёлкивается полный адрес ячейки. Недостающие адреса формируются прямо от MK («R0»…«R2»). При чтении/записи ОЗУ («*RD»/«*WR») работают 8 верхних линий MK;

г) DS1 - это ферроэлектрическое последовательное «ОЗУ/ПЗУ» FRAM (фирма Ramtron), подключаемое к MK по шине PC. При поданном питании FRAM эквивалентна ОЗУ, а при выключенном - ПЗУ. Число перезаписей не ограничено (!), время хранения информации 45 лет;

д) подключение последовательного ОЗУ DS1 (64Kx8) к MK через трёхпроводной интерфейс и «антизвонные» резисторы R2…R4;

Рис. 3.10. Схемы подключения внешней памяти к MK (продолжение):

е) в регистре DD1 хранятся младшие 8 бит шины адреса. Старшие 7 бит подаются от MK непосредственно на ОЗУ DS1 фирмы Hitachi. MK работает в режиме «External RAM». На вход «СЕ» ОЗУ DS1 вместо общего провода можно подать сигнал разрешения со свободного выхода MK. Это позволяет снизить общий расход энергии от источника питания, поскольку при ВЫСОКОМ уровне на входе «СЕ» микросхема DS1 переходит в экономичный режим хранения данных;

ж) подключение к MK последовательного флэш-ОЗУ DS1 фирмы Atmel. Если переключатель S1 замкнут, то в ОЗУ нельзя записывать данные, это режим защиты. Резисторы R3, R4 в некоторых схемах отсутствуют. Замена DS1 - любое ОЗУ большей/меньшей ёмкости из семейства DataFlash AT45DB фирмы Atmel, включая устаревшие модели AT45DB081B-CNU;

Рис. 3.10. Схемы подключения внешней памяти к MK (окончание):

з) при прямом подключении флэш-ПЗУ DS1 (фирма AMD) к MK требуется большое количество свободных линий портов. Некоторые выходные линии MK, например, «А7», могут быть одновременно задействованы для управления другими узлами, однако делать это допускается только тогда, когда отсутствует обращение к ПЗУ, т.е. при ВЫСОКОМ уровне сигнала «ОЕ»;

и) увеличение ёмкости ОЗУ за счёт параллельного соединения микросхем DSl…DSn. Каждое из подключённых ОЗУ имеет собственный сетевой программный адрес, который определяется разными логическими уровнями на входах «АО», «А1», «А2».

ПЗУ – память, информация в которой, будучи однажды записанной, изменению не подлежит. Например, программа загрузки в ОЗУ микропроцессорной системы информации из внешней памяти. Все типы ПЗУ используют один и тот же принцип построения схемы. Информация в ПЗУ представляется в виде наличия или отсутствия соединения между шинами адреса и данных.

Условное графическое обозначение ПЗУ представлено на рис.26.10.

Рис.26.10. Условное графическое обозначение ПЗУ

Рис. 26.11. Схема ПЗУ

На рис. 26.11 приведена схема простейшего ПЗУ. Для реализации ПЗУ достаточно использовать дешифратор, диоды, набор резисторов и шинные формирователи. Рассматриваемое ПЗУ содержит разрядных слова, т.е. его общий объем составляет 32 бит. Количество столбцов определяет разрядность слова, а количество строк – количество 8 разрядных слов. Диоды устанавливаются в тех местах, где должны храниться биты, имеющие значение логического «0» (дешифратор подает 0 на выбранную строку). В настоящее время вместо диодов ставят МОП-транзисторы.

В табл. 26.1 приведено состояние ПЗУ, схема которого приведена на рис. 26.11.

Таблица 26.1

Состояние простого ПЗУ

Слово Двоичное представление
А0 А1 D1 D2 D3 D4 D5 D6 D7 D8

Как правило, ПЗУ имеют многоразрядную организацию со структурой 2DM . Технологии изготовления самые разнообразные – КМОП, n-МОП, ТТЛ(Ш) и диодные матрицы.

Все ПЗУ можно разделить на следующие группы: программируемые при изготовлении (масочные), с однократным программированием и перепрограммируемые.

В запоминающих устройствах, программируемых при изготовлении (ПЗУ или ROM), информация записывается непосредственно в процессе их изготовления с помощью фотошаблона, называемого маской, на завершающем этапе технологического процесса. Такие ПЗУ называемые масочными, построены на диодах, биполярных или МОП транзисторах.

Область использования масочных ПЗУ – хранение стандартной информации, например знакогенераторы (коды букв латинского и русского алфавита), таблицы типовых функций (синусы, квадратичные функции), стандартное программное обеспечение.

Программируемые постоянные запоминающие устройства (ППЗУ, или PROM ) – ПЗУ с возможностью однократного электрического программирования. Этот вид памяти позволяет пользователю однократно запрограммировать микросхему памяти с помощью программаторов.

Микросхемы ППЗУ построены на запоминающих ячейках с плавкими перемычками. Процесс программирование заключается в избирательном пережигании плавких перемычек с помощью импульсов тока достаточной амплитуды и длительности. Плавкие перемычки включаются в электроды диодов или транзисторов.

На рис. 26.12 приведена схема ППЗУ с плавкими перемычками. Оно изготавливается со всеми диодами и перемычками, т.е. в матрице все «0», а при программировании пережигаются те перемычки, в ячейках которых должны быть логические «1».

Рис. 26.12. Фрагмент схемы ППЗУ

Репрограммируемые постоянные запоминающие устройства (РПЗУ и РПЗУ УФ) – ПЗУ с возможностью многократного электрического программирования. В ИС РПЗУ УФ (EPROM ) старая информация стирается с помощью ультрафиолетовых лучей, для чего в корпусе микросхемы имеется прозрачное окошко; в РПЗУ (EEPROM ) – с помощью электрических сигналов.

Запоминающие ячейки РПЗУ строятся на n -МОП или КМОП транзисторах. Для построения ЗЭ используются различные физические явления хранения заряда на границе между двумя диэлектрическими средами или проводящей и диэлектрической средой.

В первом варианте диэлектрик под затвором МОП транзистора делают из двух слоев: нитрида кремния и двуокиси кремния. Этот транзистор называется МНОП: металл – нитрид кремния – окисел – полупроводник. На границе диэлектрических слоев возникают центры захвата зарядов. Благодаря туннельному эффекту носители заряда могут проходить сквозь тонкую пленку окисла и скапливаться на границе раздела слоев. Этот заряд, являющийся носителем информации, хранимой МНОП-транзистором, приводит к изменению порогового напряжения транзистора. При этом пороговое напряжение возрастает настолько, что рабочее напряжение на затворе транзистора не в состоянии его открыть. Транзистор, в котором заряд отсутствует, легко открывается. Одно из состояний определено как логическая единица, второе – ноль.

Во втором варианте затвор МОП транзистора делают плавающим, т.е. не связанным с другими элементами схемы. Такой затвор заряжается током лавинной инжекции при подаче на сток транзистора высокого напряжения. В результате заряд на плавающем затворе влияет на ток стока, что используется при считывании информации, как и в предыдущем варианте с МНОП транзистором. Такие транзисторы получили название ЛИЗМОП (МОП транзистор с лавинной инжекцией заряда). Так как затвор транзистора окружен изолятором, ток утечки очень мал и информация может храниться достаточно долго (десятки лет).

В РПЗУ с электрическим стиранием над плавающим затвором транзистора размещают второй – управляющий затвор. Подача напряжения на него вызывает рассасывание заряда на плавающем затворе за счет туннельного эффекта. РПЗУ имеют весомые преимущества перед РПЗУ УФ, так как не требуют для перепрограммирования специальных источников ультрафиолетового света. ЗУ с электрическим стиранием практически вытеснили ЗУ с ультрафиолетовым стиранием.

Фрагмент схемы РПЗУ с использованием двухзатворных транзисторов типа ЛИЗМОП показан на рис. 26.13. Запись логического нуля осуществляется в режиме программирования с помощью заряда плавающего затвора. Стирание информации, т.е. разряд плавающего затвора, означает запись логической единицы. В этом случае при подаче сигнала по линии выборки опрашиваемые транзисторы открываются и передают напряжение U ПИТ на линии считывания.

Современные РПЗУ имеют информационную емкость до 4 Мбит при тактовой частоте до 80 МГц.

26.5. Flash -память

Основные принципы работы и тип запоминающих элементов Flash -памяти аналогичны ППЗУ с электрической записью и стиранием информации, построенной на транзисторах с плавающим затвором. Как правило, благодаря своим особенностям, Flash -память выделяют в отдельный класс. В ней производится стирание или всей записанной информации одновременно, или больших блоков информации, а не стирание отдельных слов. Это позволяет исключить схемы управления записью и стиранием отдельных байтов, что дает возможность значительно упростить схему ЗУ и достичь высокого уровня интеграции и быстродействия при снижении стоимости.

Рис.26.13. Фрагмент схемы РПЗУ

Современные тенденции развития электронных приборов требуют постоянного увеличения объема используемой памяти. На сегодня инженеру доступны микросхемы как энергозависимой памяти типа DRAM , которую характеризуют предельно низкая цена за бит и большие уровни интеграции, так и энергонезависимой Flash -памяти, себестоимость которой постоянно снижается и стремится к уровню DRAM .

Потребность в энергонезависимой Flash -памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе Flash -памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в Flash -памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, Flash -память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR (ИЛИ-НЕ) и NAND (И-НЕ). Структура NOR (рис. 26.14, а) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис. 26.14, б) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

Рис.26.14. Структуры на основе NOR (a) и NAND (б)

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR . Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-Flash лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-Flash ниже, чем в других технологиях Flash -памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Более детально особенности микросхем Flash -памяти можно рассмотреть на примере кристаллов серии HY 27xx(08/16)1G 1M фирмы Hynix . На рис. 26.15 показана внутренняя структура и назначение выводов этих приборов.

Микросхема имеет следующие выводы:

I/O 8-15 – вход/выход данных для х16 устройств

I/O 0-7 – вход/выход данных, адресный вход или вход команд для х8 и х16 устройств;

ALE – включение адресной защелки;

CLE – включение защелки команд;

– выбор кристалла;

– разрешение чтения;

– чтение/занят (выход с открытым стоком);

– разрешение записи;

– защита от записи

V CC – напряжение питания;

V SS – общий вывод.

Рис.26.15. Схема внешних выводов (а), назначение выводов (б) и структурная схема (в) Flash -памяти

Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read ). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.

Рис.26.16. Организация массива памяти NАND -структуры

Массив памяти NAND -структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис. 26.16).

Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC ), программных флагов и идентификаторов негодных блоков (Bad Block ) основной области. В 8-битных устройствах страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В 16-ти битных устройствах страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.

Память на основе ячеек NOR имеет сравнительно большие времена стирания и записи, но обладает доступом к каждому биту на чтение. Данное обстоятельство позволяет применять такие микросхемы для записи и хранения программного кода, который не требует частого перезаписывания. Такими применениями могут быть, например, BIOS для встраиваемых компьютеров или ПО для телевизионных приставок.

Свойства NAND-Flash определили область ее применения: карты памяти и иные устройства хранения данных. Сейчас данный тип памяти применяется почти повсеместно в мобильных устройствах, фото- и видеокамерах и т.д. NAND-Flash лежит в основе практически всех типов карт памяти: SmartMedia , MMC , SecureDigital, MemoryStick

Достигнутая в настоящее время информационная емкость Flash -памяти достигает 8ГБит, типовая совокупная скорость программирования и стирания составляет до 33.6 мС / 64 кБ при тактовой частоте до 70 МГц.

Двумя основными направлениями эффективного использования Flash -памяти являются хранение редко изменяемых данных и замена памяти на магнитных дисках. Для первого направления используется Flash -память с адресным доступом, а для второго – файловая память.

26.6. ОЗУ типа FRAM

FRAM – оперативное энергонезависимое ЗУ, сочетающее высокое быстродействие и малую потребляемую мощность, присущие ОЗУ, со свойством хранения данных при отсутствии приложенного напряжения.

В сравнении с EEPROM и Flash -памятью время записи данных в ЗУ этого типа и потребляемая мощность намного меньше (менее 70 нс против нескольких миллисекунд), а ресурс по циклам записи намного выше (не менее 10 11 против 10 5 …10 6 циклов для EEPROM ).

FRAM должна стать в ближайшем будущем самой популярной памятью в цифровых устройствах. FRAM будет отличаться не только быстродействием на уровне DRAM , но и возможностью сохранять данные при отключении энергии. Словом, FRAM может вытеснить не только медленную Flash , но и обычную ОЗУ типа DRAM . Сегодня ферроэлектрическая память находит ограниченное применение, к примеру, в RFID -тэгах. Ведущие компании, в числе которых Ramtron, Samsung, NEC, Toshiba , активно развивают FRAM . Примерно к 2015 году на рынок должны поступить n -гигабайтные модули FRAM .

Указанные свойства FRAM обеспечивает сегнетоэлектрик (перовскит), используемый в качестве диэлектрика накопительного конденсатора ячейки памяти. При этом сегнетоэлектрическое ЗУ хранит данные не только в виде заряда конденсатора (как в традиционных ОЗУ), но и виде электрической поляризации кристаллической структуры сегнетоэлектрика. Сегнетоэлектрический кристалл имеет два состояния, которые могут соответствовать логическим 0 и 1.

Термин FRAM еще не устоялся. Первые FRAM получили название – ферродинамические ОЗУ. Однако в настоящее время в качестве запоминающих ячеек используется сегнетоэлектрик и сейчас FRAM часто называют сегнетоэлектрическим ОЗУ.

Первые FRAM имели 2Т /2С -архитектуру (рис.26.17, а), на основе которой выполняется и большинство современных микросхем сегнетоэлектрической памяти. Ячейка такого типа, в которой каждому биту соответствует индивидуальный опорный бит, позволяет определить разницу зарядов с высокой точностью. А благодаря считыванию дифференциального сигнала исключается влияние разброса параметров конденсаторов ячеек. Позже появились FRAM с архитектурой 1Т /1С (рис.26.17, б). Достоинство микросхем с такой архитектурой – меньшая, чем в обычных схемах площадь ячейки и, следовательно, меньшая стоимость микросхемы в пересчете на единицу информационной емкости.

На рис.26.18 приведена структурная схема сегнетоэлектрического ОЗУ (FRAM ) объемом 1 Мбит и параллельным интерфейсом доступа FM 20L 08 фирмы Ramtron . В таблице 26.1. показаны выводы микросхемы.

FM 20L 08 – энергонезависимая память с организацией 128К×8, которая считывается и записывается подобно стандартному статическому ОЗУ. Сохранность данных обеспечивается в течение 10 лет, при этом, нет необходимости задумываться о надежности хранения данных (неограниченная износостойкость), упрощается проектирование системы и исключается ряд недостатков альтернативного решения энергонезависимой памяти на основе статического ОЗУ с резервным батарейным питанием. Быстрота записи и неограниченное количество циклов перезаписи делают FRAM лидером по отношению к другим типам энергонезависимой памяти.

Рис.26.17. Ячейка памяти типа 2Т /2С (а) и 1Т /1С (б)

Рис.26.18. Структурная схема FRAM FM 20L 08