Пассивная pfc выполнена в виде. Принцип работы PFC(Power Factor Correction)

Что такое Блок питания с активным PFC Power Factor Correction модулем?

  1. PFC (Power Factor Correction)

    Обычная, классическая, схема выпрямления переменного напряжения сети 220V состоит из диодного моста и сглаживающего конденсатора. Проблема в том, что ток заряда конденсатора носит импульсный характер (длительность порядка 3mS) и, как следствие этого, очень большим током. Например, для БП с нагрузкой в 200W средний ток из сети 220V будет 1A, а импульсный - в 4 раза больше. Если таких БП много и (или) они мощнее? ..тогда токи будут просто сумасшедшими - не выдержит проводка, розетки, да и платить придется больше за электричество, ведь качество тока потребления весьма сильно учитывается. Например, на больших заводах имеются специальные конденсаторные установки для компенсации "косинуса". В современной компьютерной технике столкнулись с теми же проблемами, но ставить многоэтажные конструкции никто не будет, и пошли другим путем - в блоках питания ставят специальный элемент по уменьшению "импульсности" потребляемого тока - PFC. Он встраивается между выпрямителем и конденсатором, ограничивает ток по амплитуде и растягивает во времени. PFC бывают пассивными и активными, что определяется демпфирующим элементом.

  2. Точно не знаю но это по ходу дела встроенный фильтр помех в электросети. То есть такому компу не нужен сетевой фильтр.
  3. PFC(Power Factor Correction) переводится как Коррекция фактора мощности, встречается также название компенсация реактивной мощности.
  4. Обычный импульсный БП питается синусоидой (той самой, которя 220В) через выпрямитель (мост) с емкостной нагрузкой. Поэтому потребляемый ток далеко не синусоидален, он имеет вид коротких пиков, расположенных на вершинах синусоиды. Т. е. с точки зрения теории цепей, он является нелинейным элементом, и вызывает излучение в сеть сильных помех (гармоники 50Гц) . При большом количестве таких нагрузок также нарушается нормальная работа трансформаторной подстанции - увеличиваются потери, падает КПД. PFC - это дополнительный преобразователь, питающийся от выпрямителя без емкостной нагрузки (пульсирующее напряжение с частотой 100Гц) и выдающий постоянное напряжение, от которого уже питается основной преобразователь. Преимущество такой схемы - потребляемый ток близок к синусоиде, уменьшается уровень помех и трансформатор работает в нормальном режиме. Недостаток - сложность и цена. Обычно такие схемы встречаются в БП большой мощности, начиная от сотен ВТ, включая популярные сейчас преобразователи для асинхронных двигателей.
  5. PFC(Power Factor Correction) переводится как Коррекция фактора мощности, встречается также название компенсация реактивной мощности. Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.
    Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
    активный PFC, в отличие от пассивного, улучшает работу блока питания - он дополнительно стабилизирует входное напряжение основного стабилизатора блока блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110...230В, не требующие ручного переключения напряжения сети. (Такие БП имеют специфическую особенность их эксплуатация совместно с дешвыми ИБП (источник бесперебойного питания) , выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart)
    Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещ одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях, т. е. такие БП рекомендуются для использования в ПК с периферией, предназначенной для работы с аналоговым аудио/видео материалом.

PFC(Power Factor Correction) переводится как «Коррекция фактора мощности», встречается также название «компенсация реактивной мощности». Применительно к импульсным блокам питания (в системных блоках компьютеров в настоящее время используются БП только такого типа) этот термин означает наличие в блоке питания соответствующего набора схемотехнических элементов, который также принято называть "PFC". Эти устройства предназначены для снижения потребляемой блоком питания реактивной мощности.

Собственно фактором или коэффициентом мощности называется отношение активной мощности (мощности, потребляемой блоком питания безвозвратно) к полной, т.е. к векторной сумме активной и реактивной мощностей. По сути коэффициент мощности (не путать с КПД!) есть отношение полезной и полученной мощностей, и чем он ближе к единице – тем лучше.
PFC бывает двух разновидностей – пассивный и активный.
При работе импульсный блок питания без каких-либо дополнительных PFC потребляет мощность от сети питания короткими импульсами, приблизительно совпадающими с пиками синусоиды сетевого напряжения.

Наиболее простым и потому наиболее распространенным является так называемый пассивный PFC, представляющий собой обычный дроссель сравнительно большой индуктивности, включенный в сеть последовательно с блоком питания.

Пассивный PFC несколько сглаживает импульсы тока, растягивая их во времени – однако для серьезного влияния на коэффициент мощности необходим дроссель большой индуктивности, габариты которого не позволяют установить его внутри компьютерного блока питания. Типичный коэффициент мощности БП с пассивным PFC cоставляет всего лишь около 0,75.

Активный PFC представляет собой еще один импульсный источник питания, причем повышающий напряжение.
Форма тока, потребляемого блоком питания с активным PFC, очень мало отличается от потребления обычной резистивной нагрузки – результирующий коэффициент мощности такого БП без PFCблока может достигать 0,95...0,98 при работе с полной нагрузкой. Правда, по мере снижения нагрузки коэффициент мощности уменьшается, в минимуме опускаясь примерно до 0,7...0,75 – то есть до уровня блоков с пассивным PFC. Впрочем, надо заметить, что пиковые значения тока потребления у блоков с активным PFC все равно даже на малой мощности оказываются заметно меньше, чем у всех прочих блоков.

Помимо того, что активный PFC обеспечивает близкий к идеальному коэффициент мощности, так еще, в отличие от пассивного, он улучшает работу блока питания - он дополнительно стабилизирует входное напряжение основного стабилизатора блока – блок становится заметно менее чувствительным к пониженному сетевому напряжению, также при использовании активного PFC достаточно легко разрабатываются блоки с универсальным питанием 110...230В, не требующие ручного переключения напряжения сети. (Такие БП имеют специфическую особенность – их эксплуатация совместно с дешёвыми ИБП, выдающими ступенчатый сигнал при работе от батарей может приводить к сбоям в работе компьютера, поэтому производители рекомендуют использовать в таких случаях ИБП класса Smart, всегда подающие на выход синусоидальный сигнал.)

Также использование активного PFC улучшает реакцию блока питания во время кратковременных (доли секунды) провалов сетевого напряжения – в такие моменты блок работает за счет энергии конденсаторов высоковольтного выпрямителя, эффективность использования которых увеличивается более чем в два раза. Ещё одним преимуществом использования активного PFC является более низкий уровень высокочастотных помех на выходных линиях

К примеру, напряжение на 1 ноге FAN7530 зависит от делителя собранного на R10 и R11, и соответственно на конденсаторе C9.

Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡ Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

⇡ Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡ Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡ Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡ Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
2 2 0 2
2 0 2 2
4 0 0 2
2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward

⇡ Вторичная цепь

Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡ Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

⇡ Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

Немного о мощности

Не беспокойтесь, для понимания, как это работает, вам не потребуются университетские знания физики. Мы просто объясним, чем отличается хороший блок питания от плохого. Если вы знаете основные принципы работы, то вряд ли совершите неудачную покупку. Итак, идём дальше.

Реактивный ток и реактивная мощность

Одна из важных проблем, касающихся энергопотребления при использовании импульсных источников питания - это "реактивный" ток, вызванный индуктивностью. Обратите внимание, что потребляемая мощность в режиме ожидания не имеет ничего общего с режимом простоя. Кроме того, нагрузка в этом случае никак не пересекается с энергопотреблением при полной нагрузке, однако использует те же компоненты. Реактивную мощность нужно существенно снижать (в лучшем случае её вообще быть не должно), чтобы она не приводила к потере энергии на сопротивлении, которая будет выделяться в виде тепла. Подобное бесполезное потребление энергия должна уменьшаться практически до нуля внутренними цепями импульсных блоков питания.

Эффективная мощность и полная мощность

Эффективная мощность противоположна реактивной в том, что она отражает реальное энергопотребление. Полная мощность представляет собой сумму активной и реактивной мощностей.

Коэффициент мощности

Этот показатель высчитывается как отношение между эффективной мощностью и полной мощностью и находится в промежутке между 0 (худший результат) и 1 (идеальный результат). Итак, при покупке блока питания вам нужно убедиться, что у него высокий коэффициент мощности: это один из ключевых показателей качества для блоков питания.

Active PFC


Active Power Factor Correction (PFC) означает активную коррекцию коэффициента мощности. Коэффициент мощность является важной характеристикой для блока питания, поскольку он отражает соотношение между активной и полной мощностями.

Преимущества:

  • Идеальной можно считать активную мощность около 99%;
  • Высокая эффективность (при низких нагрузках уже меньше);
  • Очень стабильная подача питания;
  • Меньшее энергопотребление;
  • Меньшее тепловыделение;
  • Меньший вес.

Недостатки:

  • Стоит дороже;
  • Большая вероятность выхода из строя.

Passive PFC


С помощью пассивной коррекции коэффициента мощности реактивные токи можно снижать, используя крупные катушки индуктивности. Подобный способ проще и дешевле, но он не самый эффективный.

Преимущества:

  • Стоит дешевле;
  • Отсутствие электромагнитных помех.

Недостатки:

  • Требуется лучшее охлаждение;
  • Не подходит для высоких нагрузок;
  • Высокое энергопотребление (потери энергии);
  • Тяжелее;
  • Низкая активная мощность (примерно от 70% до 80%).

Как определить эффективность блока питания?

Основные принципы, правила и положения

Одним из ключевых показателей эффективности блока питания является, соответствует ли он стандартам Energy Star 5.0 и 80 PLUS. Последний будет приоритетным для вычислительной техники и является стандартом, признанным повсеместно в мире. Кроме того, если речь идёт о европейских странах, то нужно также проверить соответствие стандартам CE и ErP.

Блоки питания стандарта 80 PLUS являются более эффективными.

Принципы и спецификации, естественно, влияют на эффективность и на качество питания. Блок питания, отмеченный сертификатом 80 PLUS, будет соответствовать определенным требованиям, что устанавливается посредством набора тестов. Мы хотели бы упомянуть, что условия стрессового тестирования 80 PLUS не соответствуют напрямую спецификации ATX, при этом они выполняются в условиях американских электрических сетей питания, работающих с меньшим напряжением. В условиях России и Европы, с сетями 230 В, эффективность блоков питания 80 PLUS будет чуть выше, чем в США.

Концепция 80 PLUS была расширена: сейчас она подразумевает несколько уровней эффективности, Platinum, Gold, Silver и Bronze, и спецификации каждого из этих стандартов имеют собственный набор требований. Таким образом, блок питания стандарта "80 PLUS Platinum" или "80 PLUS Gold" будет более эффективным, чем обычный блок питания. В то же время, эти блоки питания и стоят дороже.

По таблице ниже можно проследить, как уровень спецификации устройства влияет на его работу при заданной нагрузке, и оценить каждый конкретный уровень спецификации.

Эффективность при нагрузке 20% Эффективность при нагрузке 50% Эффективность при нагрузке 100%
80 Plus 80,00% 80,00% 80,00%
80 Plus Bronze 82,00% 85,00% 82,00%
80 Plus Silver 85,00% 88,00% 85,00%
80 Plus Gold 87,00% 90,00% 87,00%
80 Plus Platinum 90,00% 92,00% 89,00%

Потребление энергии выключенного компьютера

При выключении компьютера? блок питания, как правило, продолжает работать. Это необходимо для поддержки некоторых функций, как Wake-on-LAN. Блок питания будет тратить некоторое количество мощности даже тогда, когда компьютер выключен. Современные блоки питания, особенно те, которые продаются в Европе, согласно заявлениям производителей, тратят не более 1 Вт в таком режиме. Если для вас действительно важна экономия, то такое решение будет правильным.



СОДЕРЖАНИЕ
И снова здравствуйте!..
К сожалению статья моя задержалась, т.к. возник срочный проект по работе, а так же появились интересные трудности при реализации корректора коэффициента мощности (далее ККМ ). А вызваны они были следующим - мы в своем производстве для управления ККМ используем «заказную» микросхему, которую нам под наши задачи производит дружественная особенно в 1941-м Австрия и соответственно в продаже ее не встретить. Поэтому встала задача переделать данный модуль под доступную элементарную базу и мой выбор пал на микросхему ШИМ-контроллер - L6561 .
Почему именно она? Банальная доступность, вернее нашел ее в «Чип и Дип» , почитал даташит - понравилась. Заказал сразу 50 шт, т.к. дешевле и в своих любительских проектах у меня уже есть несколько задач для нее.

Теперь о главном: в данной стать я расскажу как почти с нуля вспоминал о проектирования однотактных преобразователей (казалось бы при чем тут они ), почему убил десяток ключей и как этого избежать вам. Данная часть расскажет теорию и что бывает если пренебрегать ей. Практическая же реализация выйдет в следующей части как я и обещал вместе с зарядным устройством , т.к. они по сути являются одним модулем и тестировать их надо вместе.
Забегая вперед скажу, что для следующей части уже заготовил пару десятков фотографий и видео, где мое ЗУ не надолго «переквалифицировалось» сначала в сварочный аппарат, а затем в блок питания для «козла» . Те, кто работают на производстве поймут что это за зверь и сколько он потребляет для нашего согревания)))

А теперь к нашим баранам…

Зачем он нам вообще нужен этот ККМ?

Главное бедой «классического» выпрямителя с накопительным конденсаторов (это та штука, которая превращает 220В переменного тока в +308В постоянного тока), который работает от синусоидального тока является то, что этот самый конденсатор заряжается (берет энергию из сети) только в моменты, когда напряжение приложенное к нему больше чем на нем самом.

На человечьем языке, слабонервным и с научными степенями не читать

Как нам известно электрический ток напрочь отказывается идти, если нету разности потенциалов. От знака же разности этой будет еще зависеть и направление протекания тока! Если вы психанули и решили попробовать напряжением 2В заряжать свою мобилу, где батарея Li-ion и рассчитана на 3.7В, то ничего у вас не выйдет. Т.к. ток будет отдавать тот источник, который имеет больший потенциал, а получать энергию будет тот у кого потенциал ниже.
Все как в жизни! Вы весите 60 кг, а парень на улице, который подошел попросить позвонить 120 кг - понятное дело, что пиздюлей раздаст он, а вы их получите. Так и тут - батарейка при своих 60 кг 2В не сможет дать ток в аккумулятор с 120 кг 3.7В. С конденсатором точно так же, если на нем +310В и вы приложите к нему +200В, то он ток получать откажется и заряжаться не будет.

Стоит так же заметить, что исходя из описанного выше «правила» время, отведенное конденсатору на зарядку будет очень маленьким. У нас же ток изменяется по синусоидальному закону, а значит необходимое напряжение будет лишь на пиках синусоиды! Но конденсатору то работать надо, поэтому он нервничает и пытается зарядиться. Он знает законы физики в отличии от некоторых и «понимает», что времени мало и поэтому начинает в эти самые моменты, когда напряжение в пике, потреблять просто огромный ток. Ведь его должно хватить на работу устройства до наступления следующего пика.

Немного об этих «пиках»:

Рисунок 1 - Пики в которых заряжается конденсатор

Как мы видим кусок периода в котором ЭДС принимает достаточное значение для заряда (образно 280-310В) составляет около 10% от полного периода в сети переменного тока. Получается, что мы вместо того, чтобы постоянно забирать плавно энергию из сети, вырываем ее лишь небольшими эпизодами, тем самым мы «перегружаем» сеть. При мощности в 1 кВт и индуктивной нагрузке, ток в момент таких «пиков» может спокойной достигать значений на 60-80А .

Поэтому наша задача сводится к обеспечению равномерного отбора энергии из сети, чтобы не перегружать сеть! Именно ККМ позволит нам реализовать данную задачу на практике.

Кто такой этот ваш ККМ?

Корректор мощности - это обычный повышающий преобразователь напряжения, чаще всего он однотактный. Т.к. мы используем ШИМ модуляцию, то в момент открытого ключа напряжение на конденсаторе постоянное. Если мы стабилизируем выходное напряжение, то ток забираемый из сети пропорционален входному напряжению, то есть изменяется плавно по синусоидальному закону без ранее описанных пиков потребления и скачков.

Схемотехника нашего ККМ

Тут я решил не изменять своим принципам и так же положился на даташит, выбранного мною контроллера - L6561 . Инженеры компании STMicroelectronics уже сделали все за меня, а если конкретнее, то он уже разработали идеальную схемотехнику для своего продукта.
Да я могу сам с нуля пересчитать все и потратить на это дело день-два, то есть все свои и так редкие выходные, но спрашивается зачем? Доказывать себе что могу, этот этап к счастью давно пройден)) Тут у меня вспоминается бородатый анекдот про площадь красных шариков, мол математик применяет формулу, а инженер достает таблицу с площадью красных шариков.... Так и в этом случае.

Советую сразу обратить внимание на то, что схема в даташите рассчитана на 120 Вт, а значит нам следует ее адаптировать под наши 3 кВт и запредельные напряжения работы.

Теперь немного документации к описанному выше:
Даташит на L6561

Если мы посмотри на страницу 6, то увидим несколько схем, нас интересует схема с подписью Wide-range Mains , что с басурманского значит «для работы в широком диапазоне напряжения питающей сети» . Именно данный «режим» я имел ввиду, говоря о запредельных напряжениях. Устройство считается универсальным, то есть может работать от любой стандартной сети (например, в штатах 110В) при диапазоне напряжений 85 - 265В.

Данное решение позволяет нам обеспечит нашему ИБП еще и функцию стабилизатора напряжения! Для многих такой диапазон покажется избыточным и тогда они могут выполнить данный модуль с учетом напряжения питания 220В +- 15%. Это считается нормой и 90% устройств в ценовой категории до 40 тыс. руб вообще лишены ККМ, а 10% используют его лишь с расчетом отклонений не более 15%. Это бесспорно позволяет несколько снизить себестоимость и габариты, но если вы еще не забыли, то мы делаем устройство, которое обязано потягаться с АРС!

Поэтому для себя я решил выбрать самый правильный вариант и сделать не убиваемый танк, который сможет вытянуть даже на даче, где 100В в сети сварочный аппарат или насос в скважине:


Рисунок 2 - Стандартное схемотехническое решение, предлагаемое ST

Адаптация стандартной схемотехники под наши задачи

а) Когда смотрю на данную схему из ДШ, первым что приходит в голову - необходимо добавить фильтр синфазных помех! И это правильно, т.к. на большой мощности они начнут «сводить с ума» электронику. Для токов 15 А и более он будет иметь более усложненный вид, чем многие привыкли его видеть в тех же компьютерных БП, где всего 500-600 Вт. Поэтому данная доработка будет отдельным пунктом.

Б) Мы видим конденсатор С1, можно взять хитрую формулу и посчитать необходимую емкость и я советую тем, кто хочет вникнуть это сделать, за одно вспомнив электротехнику 2 курса с любого политеха. Но я этим заниматься не буду, т.к. по собственным наблюдениям из старых расчетов помню, что до 10 кВт данная емкость растет почти линейно относительно роста мощности. То есть взяв в расчет 1 мкФ на 100 Вт, мы получим, что для 3000 Вт нам необходимо 30 мкФ. Данная емкость легко набирается из 7 пленочных конденсаторов по 4,7 мкФ и 400В каждый. Даже немного с запасом, ведь емкость конденсатора сильно зависит от приложенного напряжения.

В) Силовой транзистор нам понадобится серьезный, т.к. ток потребляемый от сети будет вычислять так:


Рисунок 3 - Расчет номинального тока для ККМ

Получили мы 41,83А . Теперь мы честно признаем, что удержать температуру кристалла транзистора в районе 20-25 о С мы не осилим. Вернее осилить можем, но будет дорого для такой мощности. После 750 кВт стоимость охлаждение фреоном или жидким кислородом размывается, но пока до этого далеко))) Поэтому нам надо найти транзистор, который сможет давать 45-50А при температуре 55-60 о С.

Учитывая, что в цепи есть индуктивность, то я предпочту IGBT транзистор, ибо наиболее живучие. Предельный ток надо надо выбирать для поиска сначала около 100А, т.к. это ток при 25 о С, с ростом температуры предельный коммутируемый ток транзистора снижается.

Немного о Cree FET

Получил я буквально 9 января посылку из Штатов от своего товарища с кучей разных транзисторов на тест, называется сие чудо - CREE FET . Не скажу, что это новая мега технология, на самом деле транзисторы на основе карбида кремния сделали еще в 80-х, просто до ума довели почему лишь сейчас. Я как изначальный материаловед и композитчик вообще к данной отрасли отношусь щепетильно, поэтому меня очень заинтересовал данный товар, тем более было заявлено 1200В при десятках и сотнях ампер. В России купить их не смог, поэтому обратился к своему бывшему одногруппнику и он любезно выслал мне кучу образцов и тестовую плату с forward"ом.
Могу сказать одно - это был мой самый дорогой фейерверк!
8 ключей ебнуло так, что я огорчился и на долго… На самом деле 1200В это теоретическая цифра для технологии, заявленные 65А оказались лишь импульсным током, хотя в документации было четко написано мол номинальный. Видимо был «номинальный импульсный ток» ну или как там еще китайцы придумывают. В общем то еще фуфло, но есть одно НО!
Когда я все таки сделал на CMF10120D корректор на 300 Вт, то оказалось, что он на одном и том же радиаторе и схеме имел температуру в 32 о С против 43-х у IGBT, а это очень существенно!
Вывод по CREE: технология сыровата, но она перспективна и ей определенно БЫТЬ.

В итоге полистав каталоги с посещенных мною выставок (удобная штука кстати аля параметрический поиск) я выбрал два ключа, ими стали - IRG7PH50 и IRGPS60B120 . Оба на 1200В, оба на 100+А, но открыв даташит первый ключ отсеялся сразу - он способен коммутировать ток 100А лишь на частоте в 1 кГц, для нашей задачи это губительно. Второй ключ на 120А и частоту в 40 кГц, что вполне подходит. Смотри даташит по ссылке ниже и ищем график с зависимостью тока от температуры:


Рисунок 4.1 - График с зависимостью максимального тока от частоты коммутации для IRG7PH50, оставим его на частотник


Рисунок 4.2 - График с рабочим током при заданной температуре для IRGPS60B120

Тут наблюдаем заветные цифры, которые показывают нам, что при 125 о С и транзистор и диод спокойно осилят токи чуть более 60А, при этом мы сможем реализовать преобразование на частоте в 25 кГц без каких либо проблем и ограничений.

Г) Диод D1, нам необходимо выбрать диод с рабочим напряжением не менее 600В и током номинальным для нашей нагрузки, то есть 45А. Я решил применить те диоды, которые у меня оказались под рукой (не давно закупил их для разработки сварочника под «косой мост») это - VS-60EPF12 . Как видно из маркировки он на 60А и 1200В. Ставлю я все с запасом, т.к. данный прототип делается для себя любимого и мне так спокойнее.
На самом деле вы можете поставить диод на 50-60А и 600В, но цена между версией на 600 и 1200В отсутствует.

Д) Конденсатор С5, тут все как в случае с С1 - достаточно увеличить номинал из даташита пропорционально мощности. Только стоит учесть, что если у вас планируется мощная индуктивная нагрузка или динамическая с быстрыми нарастаниями мощности (аля концертный усилок на 2 кВт), то лучше на этом пункте не экономить.
Я в своем вариант поставлю 10 электролитов по 330 мкФ и 450В , если вы планируете запитывать пару компьютеров, роутеры и прочую мелочь, то можно ограничиться 4-мя электролитами по 330 мкФ и 450В.

Е) R6 - он же токовый шунт, спасет нас от кривых рук и ошибок случайных, так же защищает схему от короткого замыкания и превышения нагрузки. Штука полезная однозначно, но если мы поступим как инженеры из ST, то на токах в 40А у нас получится обычный кипятильник. Тут есть 2 варианта: трансформатор тока или заводской шунт с падением 75мВ + ОУ аля LM358.
Первый вариант проще и дает гальваническую развязку данного узла схемы. Как рассчитывать трансформатор тока я приводил в предыдущей статье, важно помнить, что защита сработает, когда на ноге 4 напряжение вырастет до 2,5В (в реальности до 2,34В) .
Зная это напряжение и ток цепи, используя формулы из части 5 вы легко посчитаете трансформатор тока.

Ж) И последний пункт - это силовой дроссель. О нем чуть ниже.

Силовой дроссель и его расчет

Если кто-то внимательно читал мои статьи и у него отличная память, то он должен вспомнить статью 2 и фотографию № 5 , на ней видны 3 элемента моточных, которые мы используем. Еще раз покажу:

Рисунок 5 - Каркасы и сердечник для силовых моточных изделий

В данном модуле мы будем использовать опять таки наши любимые тороидальные кольца из распыленного железа, но только в этот раз не одно, а сразу 10! А как вы хотели? 3 кВт это вам не китайские поделки…

Исходные данные у нас есть:
1) Ток - 45А + 30-40% на амплитуду в дросселе, итого 58,5А
2) Напряжение на выходе 390-400В
3) напряжение на входе 85-265В AC
4) Сердечник - материал -52, D46
5) Зазор - распределенный


Рисунок 6 - И снова уважаемый Starichok51 экономит нам время и считает программкой CaclPFC

Я думаю расчет всем показал насколько это будет серьезная конструкция)) 4 кольца, да радиатор, диодный мост, да IGBT - ужас!
Правила намотки можно вычитать в статье «Часть 2». Вторичная обмотка на кольца мотается в количестве - 1 витка.

Итог по дросселю:

1) как вы видите количество колец аж 10 штук! Это накладно, каждое кольцо стоит около 140р, но что мы получим в замен в следующих пунктах
2) температура рабочая 60-70 о С - это совсем идеально, ведь многие закладывают рабочую температуру 125 о С. У себя на производстве 85 о С закладываем. Для чего это сделано - для спокойного сна, я спокойно уезжаю из дома на неделю и знаю, что у меня ничего не вспыхнет, не сгорит и все ледяное. Думаю цена за это в 1500р не такая смертельная, не так ли?
3) Плотность тока я поставил мизерную в 4 А/мм 2 , это повлияет и на тепло, и на изоляцию и соответственно на надежность.
4) Как видите по расчету емкость после дросселя рекомендована почти 3000 мкФ, так что мой выбор с 10 электролитами по 330 мкФ отлично сюда вписывается. Емкость конденсатора С1 получилась 15 мкФ, у нас двойной запас - можно уменьшить до 4-х пленочных кондеров, можно оставить 7 штук и это будет лучше.

Важно! Количество колец в основном дросселе можно уменьшить до 4-5, попутно увеличив плотность тока до 7-8 А/мм 2 . Это позволит неплохо сэкономить, но амплитуда тока вырастит несколько, а главное температура повысится не менее чем до 135 о С. Я считаю это хорошим решением для сварочного инвертора с ПВ 60%, но не для ИБП, который работает круглосуточно и наверняка в довольно ограниченном пространстве.

Что могу сказать - у нас растет монстр)))

Фильтр синфазных помех

Чтобы понять чем различаются схемы для данной фильтра на токи в 3А (упомянутый выше компьютерный БП) и на токи 20А, вы можете сравнить схемку из гугла на АТХ со следующей:


Рисунок 7 - Принципиальная схема фильтра синфазных помех

Несколько особенностей:

1) С29 - это конденсатор для фильтрации электромагнитных помех, имеет маркировку «Х1» . Его номинал должен быть в пределах 0,001 - 0,5 мФ.

2) Дроссель мотается на на сердечнике E42/21/20 .

3) Два дросселя на кольцах DR7 и DR9 мотаются на любом сердечнике из распыленки и диаметром более 20 мм. Я намотал на все тех же D46 из материала -52 до заполнения в 2 слоя. Шумов в сети даже при номинальной мощности практически нету, но это на самом деле даже в моем понимание избыточно.

4) Конденсаторы С28 и С31 по 0,047 мкФ и 1 кВ и их обязательно ставить класса «Y2».

По расчету индуктивности дросселей:

1) Индуктивность синфазного индуктора должна составлять 3,2-3,5 мГн

2) Индуктивность для дифференциальных дросселей рассчитывается по формуле:


Рисунок 8 - Расчет индуктивности дифференциальных дросселей без магнитной связи

Эпилог

Используя грамотные и профессиональные наработки инженеров компании ST, мне удалось с минимальными затратами изготовить если не идеальный, то просто отличный активный корректор коэффициента мощности с параметрами лучше чем у любого Шнайдера. Единственное вам обязательно стоит помнить насколько оно вам необходимо? И исходя из этого корректировать параметры под себя.

Моей целью в данной статье было как раз показать процесс расчета с возможностью корректирования исходных данных, чтобы каждый определившись с параметрами для своих задач уже сам посчитал и изготовил модуль. Надеюсь мне удалось показать это и в следующей статье я продемонстрирую совместную работу ККМ и зарядного устройства из части №5.