Виды ртутных ламп. Ртутно-кварцевые лампы высокого давления

Ртутные лампы типа ДРЛ

Рассмотренная в статье "Работа лампы ДРЛ " кварцевая горелка подвержена сильному влиянию внешней среды, от которой зависят условия охлаждения. Стабильность работы лампы с такой горелкой обеспечивается размещением ее внутри внешней колбы. Внутренняя поверхность внешней колбы покрывается слоем люминофора, который за счет поглощения ультрафиолетовой части излучения ртутного разряда добавляет к видимому излучению этого разряда недостающее в нем излучение в красной области спектра. Для обеспечения охлаждения кварцевой горелки не только излучением, а также конвекцией и теплопередачей внешняя колба наполняется газом, который должен быть инертным по отношению к люминофору и деталям монтажа лампы. В качестве наполняющего газа применяют смесь аргона с азотом.

Устройство лампы ДРЛ показано на рисунке 1. Присоединение ламп к сети осуществляется с помощью резьбовых цоколей, аналогичных применяемым для ламп накаливания: Е27 - для ламп мощностью до 250 Вт и Е40 - для ламп большей мощности. Для облегчения зажигания лампа выполняется трех- или четырехэлектродной. У последних основные и вспомогательные электроды соединяются через резисторы.

Форма и размеры внешней колбы и положение горелки в ней выбирают с таким расчетом, чтобы все ультрафиолетовое излучение горелки падало на слой люминофора и во время работы и во время работы лампы слой люминофора имел оптимальную для его работы температуру.

Нагрев внешней колбы происходит за счет поглощения части излучения разряда слоем нанесенного на нее люминофора и стеклом, а также теплопередачи через наполняющий колбу инертный газ. Охлаждение осуществляется благодаря излучению нагретого стекла и теплопередаче через окружающий воздух.

Равномерность температуры поверхности колбы может быть достигнута, если, пренебрегая в первом приближении конвекцией наполняющего колбу инертного газа, выполнять ее в виде поверхности, обеспечивающей равномерную облученность. Расчеты показывают, что центральная часть колбы должна иметь поверхность, близкую к эллипсоиду вращения, с большой осью, совпадающей с осью горелки. Поправка на конвекцию вынуждает несколько увеличивать диаметр той части колбы, которая при работе лампы оказывается наверху. Так как лампы практически эксплуатируют в любом положении, то поправок в форму колбы не вносят.

В ряде конструкций ламп колба выполняет роль оптического элемента, перераспределяющего световой поток. В этом случае форма и размер колбы должны рассчитываться, как это делается для светильников, причем в расчете должен также учитываться ее тепловой режим.

Для исправления цветности ламп типа ДРЛ применяют различные виды люминофоров. Применение фосфат-ванадат-иттриевого люминофора вместо фторогерманата магния позволило улучшить параметры ламп типа ДРЛ.

Применение люминофора, нанесенного на внутреннюю стенку внешней колбы, с одной стороны, приводит к добавлению в спектре недостающего красного излучения, а с другой - вызывает поглощение в этом слое части видимого излучения. С ростом толщины слоя люминофора поток излучения лампы имеет максимум при определенной толщине слоя, в то время как проходящий через слой люминофора световой поток разряда постепенно уменьшается. Для решения вопроса об оптимальной толщине слоя люминофора и общей оценки его эффективности для характеристики ламп типа ДРЛ введено понятие "красное отношение". Красным отношением называют выраженное в процентах отношение красного светового потока, добавляемого люминофором, к общему световому потоку ламп. Очевидно, что лучшими будут люминофор и такой его слой, которые при создании красного отношения, достаточного для обеспечения правильной цветопередачи, обеспечивают максимальный световой поток лампы в целом, то есть наибольшую световую отдачу.

Красное отношение принято выражать в процентах зависимостью

где φ (λ) - спектральная плотность потока излучения лампы; V (λ) - относительная чувствительность глаза.

Красное отношение для ламп типа ДРЛ с оптимальной толщиной люминофора из фторогерманата и арсената магния достигает 8 %, а световой поток - 87 % светового потока лампы без люминофора. Применение ортофосфатноцинковых люминофоров с добавкой стронция позволяет получить световой поток, на 15 % превышающий световой поток лампы без люминофора, и r кр = 4 - 5 %.

В процессе зажигания ламп имеет место катодное распыление активного вещества катода и стержневой части электрода. В установившемся режиме горения на переменном токе из-за перезажигания разряда в каждый полупериод распыление стержневой части электрода продолжается. Это ухудшает со временем эмиссионные свойства обеих частей электродов, соответственно растет необходимое для зажигания ламп напряжение. Распыление электродов приводит одновременно к поглощению молекул наполняющего лампу инертного газа, начальное давление которого выбиралось из условий зажигания разряда. Эти процессы приводят к образованию на стенках горелки темного налета из частиц распылившихся электродов, поглощающего излучение, в особенности его ультрафиолетовую составляющую, и красное отношение снижается. Прекращение зажигания определяет полный срок службы ламп типа ДРЛ, а нормируемое снижение световой отдачи - их полезный срок службы.

Рисунок 2. Детали конструкции горелки ртутной лампы высокого давления:
1 - основной электрод; 2 - молибденовые фольговые вводы основного электрода и электрода поджига; 3 - добавочный резистор в цепи электрода зажигания; 4 - цепь электрода зажигания

Условное обозначение ламп ДРЛ расшифровывается следующим образом: Д - дуговая, Р - ртутная, Л - люминесцентная. Цифры после букв соответствуют мощности лампы в ваттах, дальше в скобках приводится красное отношение в процентах и через дефис - номер разработки. Подавляющее большинство ламп типа ДРЛ выпускаются четырехэлектродными, то есть с дополнительными электродами для облегчения зажигания (смотрите рисунок 2). Такие лампы зажигаются непосредственно от напряжения сети. Небольшая часть ламп ДРЛ изготовляются двухэлектродными, для их зажигания применяют специальные зажигающие устройства.

Лампы ДРЛ находят применение в установках наружного освещения и для освещения высоких помещений промышленных предприятий, где не предъявляется жестких требований к качеству цветопередачи.

Влияние температуры окружающей среды сказывается прежде всего на напряжении зажигания ламп. При отрицательных температурах зажигание ламп типа ДРЛ затруднено, что связано со значительным уменьшением давления ртути, в результате чего зажигание происходит в чистом аргоне и требует более высоких напряжений, чем при наличии паров ртути. Согласно ГОСТ 16354-77 лампы типа ДРЛ всех мощностей должны зажигаться при напряжении не более 180 В при температуре окружающей среды 20 - 40 °С; при температуре -25 °С напряжениезажигания ламп увеличивается до 205 В, при -40 °С напряжение зажигания для ламп мощностью 80 - 400 Вт составляет не более 250 В, мощностью 700 и 1000 Вт - 300 В. На световые и электрические параметры ламп типа ДРЛ изменение внешней температуры практически не влияет. В таблице 1 приведены параметры ламп типа ДРЛ. Лампы имеют две модификации с красным отношением 6 и 10 %.

Таблица 1

Основные параметры ламп типа ДРЛ по ГОСТ 16357-79

Тип лампы Мощность, Вт Рабочее напряжение, В Ток, А Световой поток, лм Размеры, мм Средний срок службы
диаметр внешней колбы полная длина
ДРЛ80(6)-2
ДРЛ125(6)-2
ДРЛ250(6)
ДРЛ400(6)-2
ДРЛ700(6)-2
ДРЛ1000(6)-2
ДРЛ2000(6)
80
125
250
400
700
1000
2000
115
125
130
135
140
145
270
0,80
1,15
2,13
3,25
5,40
7,50
8,00
3400
6000
13000
23000
40000
57000
120000
81
91
91
122
152
181
187
165
184
227
292
368
410
445
10000
10000
12000
15000
15000
15000
6000

Ртутно-вольфрамовые лампы

Затрудненное зажигание ламп типа ДРЛ при отрицательных температурах, использование индуктивных балластов, а также необходимость исправления цветности излучения привели к созданию ламп высокого давления с балластом в виде нити лампы накаливания. Отметим, что большие потери мощности в активном балласте, которым является нить накаливания, по сравнению с потерями в индуктивном балласте компенсируются простотой активного балласта при возможности одновременного получения с его помощью недостающего красного излучения.

Поместив во внешнюю колбу, в которой размещена кварцевая горелка для уменьшения зависимости ее параметров от внешней температуры, балластную нить накала, удалось получить лампу, пригодную для непосредственного включения в сеть. Конструкция такой лампы показана на рисунке 3. Размещение нити накала внутри колбы лампы создает дополнительное преимущество, заключающееся в сокращении периода разгорания за счет нагрева горелки излучением спирали.

Основным при расчете ламп смешанного света, как называют иногда ртутно-вольфрамовые лампы, является выбор параметров нити накала. Мощность нити выбирают исходя из условия стабилизации ртутного разряда. световую отдачу нити приходится снижать ради получения достаточно красного отношения, одновременно обеспечивается срок службы нити, соизмеримый со сроком службы кварцевых горелок. В пусковой период напряжение сети целиком падает на спираль, однако по мере разгорания ртутной лампы напряжение на ней повышается, а напряжение на балластной спирали снижается до рабочего значения. Световая отдача ртутно-вольфрамовых ламп составляет 18 - 20 лм/Вт, так как около 50 % мощности расходуется на нагрев спирали. Поэтому эти лампы по экономичности не могут конкурировать с лампами типа ДРЛ и другими лампами высокого давления. Их применение ограничено специальными областями, например, облучательной техникой.

Лампы типа ДРВЭ имеют внешнюю колбу, выполненную из специального стекла, пропускающего ультрафиолетовое излучение. Такие лампы применяют для совместного освещения и облучения, например в теплицах. Срок службы таких ламп составляет 3 - 5 тысяч часов, он определяется сроком службы вольфрамовой нити накала.

Трубчатые ртутные лампы

Кроме ламп работающих на основе разряда высокого давления в парах ртути и предназначенных для целей освещения, изготовляют несколько видов источников излучения, разработка которых связана с необходимостью использования не только видимого, но и ультрафиолетового излучения. Как известно, ультрафиолетовое излучение обладает химическим и биологическим действием. Широко используется актиничность ультрафиолетового излучения, то есть воздействие на светочувствительные материалы, применяемые в полиграфической промышленности. Мощные потоки бактерицидного излучения, большие, чем у бактерицидных , позволяют использовать ртутные лампы высокого давления для целей обеззараживания воды и других веществ. Химическая активность ультрафиолетового излучения и возможность сконцентрировать большие мощности излучения на небольших поверхностях привели к широкому использованию ртутных ламп высокого давления в химической, деревообрабатывающей и других отраслях промышленности.

Для ламп этого типа необходимы колбы из механически прочного и тугоплавкого кварцевого стекла. Применяемое кварцевое стекло, пропускающее ультрафиолетовое излучение начиная с длины волны 220 нм, то есть практически весь спектр излучения ртутного разряда, позволяет изменять параметры излучения лишь за счет изменения рабочего давления. Непрозрачность кварцевого стекла для резонансного излучения с длиной воны 185 нм не имеет практического значения, так как ультрафиолетовое излучение такой длины волны практически полностью поглощается воздухом.

Указанное привело к созданию ртутных ламп высокого давления, отличающихся конструкцией, обусловленной рабочим давлением и областью применения. основные параметры ламп высокого давления приведены в таблице 2.

Таблица 2

Основные параметры ртутных трубчатых ламп высокого давления по ГОСТ 20401-75

Тип лампы Мощность, Вт Напряжение, В Ток, А Длина дуги, мм Габаритная длина, мм Диаметр горелки, мм Средний срок службы, ч
ДРТ230
ДРТ400
ДРТ1000
ДРТ2500
ДРТ2800
ДРТ5000
ДРТ4000
230
400
1000
2500
2800
5000
4000
70
135
145
850
1150
1800
1900
3,8
3,25
7,5
3,4
2,4
3,1
2,4
60
120
175
1000
610
1100
1000
190
265
350
1200
700
1290
1118
20
22
32
21
15
20
14
1500
2700
1500
3500
1000
1500
13000

Промышленность выпускает ртутные лампы типа ДРТ (дуговые ртутные трубчатые) с давлением до 2 × 10 5 Па в виде прямых трубок диаметром 14 - 32 мм. На рисунке 4 даны общий вид и габаритные размеры ламп типа ДРТ различной мощности. Оба конца трубок имеют удлинения меньшего диаметра, в которые впаяна молибденовая фольга, служащая вводами. С внутренней стороны ламп к вводам приварены вольфрамовые активированные самокалящиеся электроды, конструкция которых показана на рисунке 5. Для крепления ламп в арматуре лампы снабжены металлическими хомутиками с держателями. Имеющийся посредине колбы носик является остатком штенгеля, отпаянного после вакуумной обработки лампы. Для облегчения зажигания лампы имеют специальную полосу, на которую подается зажигающий импульс.

Рисунок 4. Общий вид ламп типа ДРТ (давление паров ртути до 0,2 МПа) мощностью, Вт:
а - 230; б - 400; в - 1000

Рисунок 5. Электроды (катоды) ртутных ламп высокого давления:
1 - активное вещество (оксид); 2 - вольфрамовый сердечник; 3 - спираль

Трубчатые ксеноновые лампы

К трубчатым лампам высокого давления относят также лампы, в которых используется излучение ксенона при давлениях от сотен до миллионов паскалей. Характерной особенностью разряда в инертных газах при высоких давлениях и больших плотностях тока является непрерывный спектр излучения, обеспечивающий хорошую цветопередачу освещаемых объектов. В видимой области спектр ксенонового разряда близок к солнечному с цветовой температурой 6100 - 6300 К. Важной особенностью такого разряда является его возрастающая вольт-амперная характеристика при высоких плотностях тока, что позволяет стабилизировать разряд с помощью небольших балластных сопротивлений. Ксеноновые трубчатые лампы значительной длины могут включаться в сеть вообще без дополнительного балласта. Преимуществом ксеноновых ламп является отсутствие периода разгорания. Параметры ксеноновых ламп практически не зависят от температуры окружающей среды вплоть до температур -50 °С, что позволяет применять их в установках наружного освещения в любых климатических зонах. Вместе с тем ксеноновые лампы имеют высокое напряжение зажигания и требуют применения специальных зажигающих устройств. Малый градиент потенциала обусловил использование в лампах более массивных вводов.

Световая отдача ламп растет с ростом удельной мощности и диаметра разрядной трубки. При больших плотностях тока разряд в инертных газах обладает очень высокой яркостью. По теоретическим оценкам, предельная яркость разряда в ксеноне может достигать 2 × 10³ Мкд/м². Основные параметры ксеноновых ламп высокого давления приведены в таблице 3. Трубчатые ксеноновые лампы работают как с естественным, так и с водяным охлаждением. Применение водяного охлаждения позволило поднять световую отдачу ламп с 20 - 29 до 35 - 45 лм/Вт, но несколько усложнило конструкцию. Горелка ламп с водяным охлаждением заключается в стеклянный сосуд, а в пространстве между горелкой и внешним сосудом-цилиндром циркулирует дистиллированная вода.

Таблица 3

Основные параметры ксеноновых ламп высокого давления

Тип лампы Мощность, Вт Напряжение, В Ток, А Световой поток, 10³, лм Внутренний диаметр трубки, мм Полная длина, мм Средний срок службы, ч Схема включения
ДКсТ2000
ДКсТ5000
ДКсТ10000
ДКсТ20000
ДКсТ50000
ДКсТВ3000

ДКсТВ5000
ДКсТВ6000
ДКсТВ8000
ДКсТВ15000
ДКсТВ50000

2000
5000
10000
20000
50000
3000

5000
6000
8000
15000
50000

40
110
220
380
380
90

150
220
240
220
380

49
44
46
56
132
30

30
30
30
68
132

35,7
97,6
250
694
2230
81,2

139
211
232
592
2088

24
22
21
21
38
4

4
7
4
7
12

356
646
1260
1990
2700
285

315
478
375
460
935

300
300
800
800
500
100

100
300
800
200
200

с балластом
с балластом
без балласта
без балласта
без балласта
с балластом, на постоянном токе
то же
без балласта
с выпрямителем
без балласта
без балласта

Высокие температуры трубки (около 1000 К) требует применения кварцевого стекла и соответствующих конструкций молибденовых вводов, рассчитанных на большие токи. Электроды ламп выполняют из активированного вольфрама. Одна из конструкций ксеноновой лампы с водяным охлаждением приведена на рисунке 6.

Рисунок 6. Общий вид трубчатой ксеноновой лампы мощностью 6 кВт с водяным охлаждением

На параметры безбалластных ксеноновых ламп оказывает сильное влияние напряжение сети. При отклонениях напряжения сети на ±5 % номинального мощность лампы изменяется примерно на 20 %.

Обозначение ламп состоит из букв Д - дуговая, Кс ксеноновая, Т - трубчатая, В - с водяным охлаждением и цифр, обозначающих мощность лампы в ваттах и через дефис - номер разработки.

Дуговые ртутные лампы высокого давления (ДРЛ)

Лампа ДРЛ250 на самодельном испытательном стенде

Для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи, применяются ртутные лампы высокого давления типа ДРЛ.

Устройство

Устройство лампы ДРЛ

Устройство лампы ДРЛ

Лампа ДРЛ (смотри рисунок справа) имеет следующее строение: стеклянный баллон 1, снабжённый резьбовым цоколем 2. В центре баллона укреплена кварцевая горелка (трубка) 3, заполненная аргоном с добавкой капли ртути. Четырёхэлектродные лампы имеют главные катоды 4 и дополнительные электроды 5, расположенные рядом с главными катодами и подключенные к катоду противоположной полярности через добавочный угольный резистор 6. Дополнительные электроды облегчают зажигание лампы и делают её работу более стабильной.

В последнее время лампы ДРЛ изготовляют трехэлектродные, с одним пусковым электродом и резистором.

Розжиг лампы ДРЛ400 в домашних условиях

Принцип действия

В горелке из прочного тугоплавкого химически стойкого прозрачного материала в присутствии газов и паров металлов возникает свечение разряда - электролюминесценция.

При подаче напряжения на лампу между близко расположенными главным катодом и дополнительным электродом обратной полярности на обоих концах горелки начинается ионизация газа. Когда степень ионизации газа достигает определённого значения, разряд переходит на промежуток между главными катодами, так как они включены в цепь тока без добавочных сопротивлений, и поэтому напряжение между ними выше. Стабилизация параметров наступает через 10-15 минут после включения(в зависимости от температуры окружающей среды- чем холоднее тем дольше будет разгораться лампа).

Электрический разряд в газе создаёт видимое белое без красной и голубой составляющих спектра и невидимое ультрафиолетовое излучение, вызывающее красноватое свечение люминофора. Эти свечения суммируются, в результате получается яркий свет, близкий к белому.

При изменении напряжения сети на 10-15 % в большую или меньшую сторону работающая лампа отзывается соответствующим повышением или потерей светового потока на 25-30 %. При напряжении менее 80 % сетевого лампа может не зажечься, а в горящем состоянии погаснуть.

При горении лампа сильно нагревается. Ввиду особенности, лампа ДРЛ после выключения должна остыть перед следующим включением.

Традиционные области применения ламп ДРЛ

Освещение открытых территорий, производственных, сельскохозяйственных и складских помещений. Везде, где это связано с необходимостью большой экономии электроэнергии, эти лампы постепенно вытесняются НЛВД (освещение городов, больших строительных площадок, высоких производственных цехов и др.).

Дуговые ртутные металлогалогенные лампы (ДРИ)

Аббревиатура «ДРИ» расшифровывается, как «дуговая ртутная с излучающими добавками (иодиды и бромиды металлов)». Наряду с ртутью, в эти лампы вводятся йодиды натрия, таллия и индия, благодаря чему значительно увеличивается световая отдача (она составляет примерно 70 - 95 люмен/Вт и выше) при достаточно хорошей цветности излучения. Лампы имеют колбы эллипсоидной и цилиндрической формы. Внутри колбы размещается кварцевая или керамическая цилиндрическая горелка, где происходит разряд в парах металлов и их йодидов. Срок службы - до 8-10 тыс. часов.

В современных лампах ДРИ используются в основном керамические горелки, обладающие большей стойкостью к реакциям с их функциональным веществом, благодаря чему со временем горелки затемняются гораздо меньше кварцевых. Однако последние тоже не снимают с производства из-за их относительной дешевизны.

Ещё одно отличие современных ДРИ - шаровидная форма горелки, позволяющая снизить спад светоотдачи, стабилизировать ряд параметров и увеличить яркость «точечного» источника. Различают два основных исполнения данных ламп: с цоколями Е27, Е40 и софитное - с цоколями типа Rx7S и подобными им.

Для зажигания ламп ДРИ необходим пробой межэлектродного пространства импульсом высокого напряжения. В «традиционных» схемах включения данных паросветных ламп, помимо индуктивного балластного дросселя, используют импульсное зажигающее устройство - ИЗУ .

Изменяя состав примесей в лампах ДРИ, можно добиться «монохроматических» свечений различных цветов (фиолетового, зелёного и тп) Благодая этому ДРИ широко используются для архитектурной подсветки. Лампы ДРИ-12 (с зеленоватым оттенком) используют на рыболовецких судах для привлечения планктона.

Дуговые ртутные металлогалогенные лампы с зеркальным слоем (ДРИЗ)

Представляет собой обычную лампу ДРИ, часть колбы которой изнутри частично покрыта зеркальным отражающим слоем, благодаря чему такая лампа создает направленный поток света. По сравнению с применением обычной лампы ДРИ и зеркального прожектора, уменьшаются потери за счет уменьшения переотражений и прохождений света через колбу лампы.

Ртутно-кварцевые шаровые лампы (ДРШ)

Ртутно-кварцевые лампы высокого давления (ПРК, ДРТ)


Wikimedia Foundation . 2010 .

    Лампа чёрного света Лампа чёрного cвета, или лампа Вуда, (англ. Black light, Wood s light) лампа, излучающая почти исключительно в наиболее длинноволновой («мягкой») части ультрафиолетового диапазона и практически не дающая видимого света.… … Википедия

    Отечественная экспортная радиолампа 6550C Электронная лампа, радиолампа электровакуумный прибор (точнее вакуумный электронный прибор), работа которого осуществляется за счёт изменения потока электронов, которые движутся в вакууме или разрежённом… … Википедия

    Относятся к газоразрядным лампам и обеспечивают высокую для своих размеров светоотдачу. Металлогалогеновые лампы являются компактными, мощными и эффективными источниками света. Изобретенные в конце 60 х годов ХХ века для промышленного… … Википедия

    Используют газовый разряд в парах натрия для получения света. Дают ярко оранжевый свет. Натриевые газоразрядные лампы широко применяются для уличного освещения, где они постепенно заменяют менее эффективные и экологичные ртутные газоразрядные… … Википедия

    Натриевые газоразрядные лампы используют газовый разряд в парах натрия для получения света. Дают ярко оранжевый свет. Натриевые газоразрядные лампы широко применяются для уличного освещения, где они постепенно заменяют менее эффективные и… … Википедия

    Различные виды люминесцентных ламп Люминесцентная лампа газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не… … Википедия

    Ксеноновая лампа (15 кВт) для проектора IMAX Ксеноновые газоразрядные лампы газоразрядный источник света. Описание Световой поток высокой интенсивности получается за счёт свечения газа, инициированного … Википедия

Разрядные лампы высокого давления

В эту группу ИС входят ртутные лампы высокого давления (ДРЛ), металлогалогенные лампы (ДРИ), натриевые лампы (ДНаТ), ксеноновые лампы (ДКсТ, ДКсШ).

Электрический разряд в парах ртути сопровождается электромагнитными излучениями в видимой области спектра и в области ближнего ультрафиолета не только при низких давлениях паров (что используется в ЛЛ), но и при достаточно высоких давлениях – около 10 5 Па. Такой разряд используется в дуговых ртутных лампах высокого и сверхвысокого давления, которые часто называют лампами высокой интенсивности.

Ртутные лампы высокого и сверхвысокого давления долгое время являлись самой распространенной и многочисленной группой ИС среди РЛ высокого и сверхвысокого давления. Это связано с тем, что при помощи ртутного разряда удается создавать весьма эффективные источники в ультрафиолетовой, видимой и близкой к видимой инфракрасной областях спектра. Эти ИС имеют широкий диапазон номинальных мощностей, продолжительность горения десятки тысяч часов, достаточно компактны, обладают при необходимости весьма высокими яркостями.

Исходя из конструктивных особенностей ртутные лампы высокого (РЛВД) и сверхвысокого давления (РЛСВД) подразделяются на следующие группы:

– РЛВД (типа ДРТ);

– РЛВД с исправленной цветностью (типа ДРЛ и ДРВЭ);

– трубчатые РЛСВД с естественным охлаждением;

– капиллярные РЛСВД с принудительным (воздушным или водяным) охлаждением;

– шаровые РЛСВД с естественным охлаждением.

Большинство типов РЛВД и РЛСВД имеют специфическое применение, и для целей освещения не используется. Так, РЛВД, являясь эффективными источниками ультрафиолетового излучения, применяются в медицине, сельском хозяйстве, измерительной и светокопировальной технике. Областью применения РЛСВД являются лучевые осциллографы, фотолитография, проекционные системы, люминесцентный анализ, т.е. те случаи, когда требуются источники высокой яркости в видимой и близкой к ней ультрафиолетовой областях спектра.

Характерной особенностью разряда в парах ртути под высоким давлением является практически полное отсутствие излучений в красноволновой области спектра. Разряд имеет линейчатый спектр и содержит всего 4 линии в видимой области. Поэтому возникает задача исправления цветности разряда ртутной лампы. Эта задача может быть решена одним из следующих способов:

– использование люминофоров – такие лампы получили название ДРЛ (дуговая ртутная люминесцентная);

– добавление в разрядную трубку излучающих добавок – галогенидов (металлогалогенные лампы типа ДРИ);

– сочетание люминофора с излучающей добавкой (лампы ДРИЛ);


– объединение ртутной лампы с лампой накаливания (лампа ДРВЭ – дуговая ртутно-вольфрамовая эритемная).

Ртутно-вольфрамовые лампы, в которых наряду с ртутной горелкой имеется вольфрамовая спираль, попутно исполняющая роль активного балласта, применяются в облучательных установках для эритемного (покраснение кожи, которое сменяется пигментацией – загаром) освещения людей (например, в соляриях) и животных.

Дуговые ртутные люминесцентные лампы (ДРЛ)

Лампы ДРЛ (рис. 57) представляют собой трубку (горелку) 7 из прозрачного кварцевого стекла, рассчитанную на рабочую температуру около 800 °С и закреплённую при помощи траверсы 3 внутри внешней эллипсообразной колбы 2 (эта форма обеспечивает равномерное распределение температуры). Внутрь трубки после тщательного удаления посторонних газов вводится строго дозированное количество ртути и аргон при давлении 1,5…3 кПа. Аргон служит для облегчения разряда и защиты электродов от распыления в начальной стадии разгорания лампы, так как при комнатной температуре давление паров ртути очень низкое.

По концам горелки впаяны два ак­ти­вированных (покрытых слоем окислов щёлочно­-земельных металлов) самокалящихся вольфрамовых электрода 4 и рядом с каждым из них по одному дополнительному – зажи­га­ющему электроду 5 длиной 2 мм. Такие лампы называются четырёх­элек­трод­ными, в отличие от прежде выпускавшихся двухэлектродных, не имевших зажигающих электродов. Наличие зажигающих электродов обеспечивает зажигание не разогретых ламп при напряжении не ниже 90 % номинального, так как первоначальный разряд возникает между соседними рабочим и зажигающим электродами. Напряжение на электроды подаётся через резьбовой цоколь 1. После возникновения разряда в лампе зажигающие электроды на её работу влияния не оказывают, потому что в их цепь включено токоограничивающее сопротивление 6.

Внешняя колба покрыта изнутри люминофором и заполняется смесью аргона и азота для предотвращения окисления и отвода тепла от горелки. Люминофор преобразует ультрафиолетовое излучение ртутного разряда высокого давления, составляющее 40 % всего потока излучения, в недостающее излучение в красной части спектра. Качество исправления цветопередачи ламп типа ДРЛ определяется её «красным отношением», т.е. долей светового потока в красной области спектра (600…780 нм) в общем световом потоке лампы. В целом лампы ДРЛ даже с самым большим значением «красного отношения» существенно уступают ЛЛ по цветопередаче. Индекс цветопередачи этих ламп один из самых низких – 40…45.

Лампы ДРЛ включаются в сеть последовательно с балластным дросселем (рис. 58), потери мощности в котором составляют примерно 10 % мощности лампы. Только при низких температурах окружающей среды (ниже –30 °С) необходимо применять импульсное зажигающее устройство (ИЗУ), которое обеспечивает её зажигание при температурах до – 45 °С.

Для зажигания ламп ДРЛ характерно наличие периода разгорания, достигающего пяти-семи минут (рис. 59). В течение этого периода основные характеристики лампы претерпевают изменение вследствие изменения давления паров ртути в горелке – у ламп мощностью 80 Вт давление повышается до 10 6 Па, у ламп 1000 Вт – до 2,5·10 5 Па. В частности, пусковой ток лампы в два раза превышает номинальный.

По той причине, что после от­клю­че­ния лампы ДРЛ давление паров остаётся высоким, зажечь её повторно можно только после остывания через 5…10 минут. Поэтому в сетях аварийного освещения лампы ДРЛ не используются.

Если питающее напряжение исчезнет на полпериода или снизится ниже 90 % от номинального на два периода, лампа погаснет и зажжется вновь, когда остынет.

Пульсация светового потока этих ламп весьма значительна (коэффициент пульсации составляет 63…74 %).

Оптимальным положением лампы является вертикальное. При горизонтальном положении световой поток уменьшается на 2…5 %.

Лампы ДРЛ выпускаются мощностью от 50 до 2000 Вт. Их световая отдача составляет от 40 до 60 лм/Вт.

Средняя продолжительность горения – до 20 000 часов. К концу срока службы световой проток снижается до 60 % от номинального (через 100 часов горения). При изменениях подводимого напряжения в пределах от 90 до 110 % продолжительность горения меняется от 140 до 70 %, а световой поток – от 65 до 130 %.

Важно подчеркнуть, что в последнее время лампы ДРЛ вытесняются другими РЛ, так как уступают им по важнейшим характеристикам.

В условном обозначении ламп типа ДРЛ указывается их мощность, красное отношение (в скобках) и номер разработки, например, ДРЛ400(6)-4, где 6 – доля лучей в красноволновой области спектра.

Дуговые ртутные лампы с излучающими добавками (мгл)

Металлогалогенные лампы (МГЛ) появились в 60-е годы ХХ в. и благодаря своей высокой световой отдаче, приемлемому спектру излучения и достаточно большой мощности являются одним из самых перспективных источников света.

Исправление цветности излучения МГЛ основано на том, что внутрь разрядной трубки вводятся химические соединения, которые позволяют исправить спектральный состав излучения собственно ртутного разряда без использования люминофора. Этому способствует то, что галогениды многих металлов испаряются легче чем сами металлы и не разрушают кварцевое стекло. Поэтому внутрь разрядных колб МГЛ кроме ртути и аргона, как в РЛВД, дополнительно вводятся в виде галоидных соединений (соединений с йодом, бромом, хлором) щелочные (натрий, литий, цезий) и другие агрессивные металлы (кадмий, цинк), которые в чистом виде вызывают весьма быстрое разрушение кварцевого стекла. После зажигания разряда, когда достигается рабочая температура колбы, галогениды частично переходят в парообразное состояние. Попадая в центральную зону разряда с температурой несколько тысяч градусов Кельвина, молекулы галогенидов диссоциируют на галоген и металл. Атомы металла возбуждаются и излучают характерные для них спектры. Диффундируя за пределы разрядного канала и попадая в зону с более низкой температурой вблизи стенок колбы, они воссоединяются в галогениды, которые вновь испаряются. Применение галогенидов резко увеличило число химических элементов вводимых в разрядную трубку и, как итог, позволило создать МГЛ с разнообразными спектрами.

Большинство МГЛ выпускается только с двумя рабочими электродами и не имеет (или имеют один) поджигающих электродов. По этой причине они включаются в сеть через импульсное зажигающее устройство (ИЗУ) и зажигаются импульсом повышенного напряжения, близкого к 2 кВ (рис. 60).

В зависимости от применения различают:

1) МГЛ общего назначения (типа ДРИ);

2) трубчатые и шаровые (типа ДРИШ) МГЛ с улучшенным качеством цветопередачи, применяемые для цветных теле- и киносъёмок;

3) МГЛ для многочисленных специальных применений, в основном технологических, например, для облучения растений.

Металлогалогенные лампы для общего освещения типа ДРИ

Лампы типа ДРИ по конструкции подобны лампам типа ДРЛ с горелками. Внешняя колба в отличие от ламп ДРЛ у большинства типов ламп ДРИ не покрыта люминофором, но иногда применяют стандартные колбы ламп ДРЛ с люминофорным покрытием (типа ДРИЛ).

Положение горения значительно влияет на параметры ламп ДРИ, поэтому некоторые типы МГЛ выпускают в различных модификациях, рассчитанных на разное положение горения (вертикальное и горизонтальное).

Пульсация светового потока ламп ДРИ существенно ниже чем у ламп типа ДРЛ и составляет около 30 %.

Температура окружающей среды оказывает незначительное влияние на процесс зажигания и на работу ламп ДРИ.

При изменении питающего напряжения характеристики ламп ДРИ меняются более заметно, чем у ламп типа ДРЛ: изменение напряжения на каждый процент приводит к изменению светового потока примерно на 2,5 %.

Лампы ДРИ выпускаются мощностью от 125 до 3500 Вт и, учитывая их малый объем, имеют высокую удельную мощность. Световая отдача ламп ДРИ сопоставима со световой отдачей лучших ЛЛ – более 100 лм/Вт и в перспективе должна достичь 120 лм/Вт. Средняя продолжительность горения – 10000…12000 ч. Индекс цветопередачи невысокий, но превышающий аналогичный у ламп ДРЛ – от 45 до 65. В лампах с галогенидами олова и йодидами диспрозия индекс цветопередачи – от 80 до 90.

Часть ламп ДРИ (типа ДРИЗ) выпускается в зеркальных отражающих колбах.

По стоимости лампы ДРИ существенно уступают другим РЛ большой мощности. Цена (2006 г.) ДРИ250 составляет 900 руб., против 115 руб. у ДРЛ250 и 325 руб. у ДНаТ250.

Вы решили организовать систему насыщенного, яркого и экономичного освещения на улице и во дворе, купив для этих целей ртутные лампы? Сегодня на рынке осветительного оборудования и сопутствующих элементов ртутьсодержащая продукция представлена в широком ассортименте и по приемлемой стоимости, ведь верно? Но вы сомневаетесь в целесообразности такого решения и не знаете, какую модель лампочки лучше выбрать?

Мы поможем вам разобраться во всех тонкостях покупки и применения ртутных осветительных приборов - в статье рассмотрены существующие разновидности этих ламп, их преимущества и недостатки. Уделено внимание безопасной эксплуатации и правильной утилизации по окончанию срока использования.

Приведены лучшие производители ртутных модулей, предлагающие хороший ассортимент отличного качества. Материал статьи снабжен фотообразцами ртутьсодержащих приборов, а также видеороликами с обзором различных видов ламп и нюансами их утилизации.

Наличие токсичного вещества существенно снижает привлекательность изделий. Однако, полностью от них еще не отказались и считать ртутные приборы устаревшими пока рано.

Ртутные устройства высокого давления отлично справляются с задачей освещения больших крытых и открытых пространств. Интенсивность их свечения при равной мощности почти в 10 раз превышает результаты стандартных ламп накаливания

Классификация ламповых аппаратов

Первичная классификация ртутных изделий происходит в зависимости от давления внутреннего наполнения и имеет следующую буквенную аббревиатуру:

  • РЛНД – лампы низкого давления;
  • РЛВД – модули высокого давления;
  • РЛСВД – устройства сверхвысокого давления.

В первой группе находятся изделия, имеющие в установившемся режиме базовое парциальное давление ртутных паров меньше, чем 0,01 МПа. Во второй эта величина составляет от 0,1 МПа до 1 МПа, а в третьей – превышает 1 МПа.

№1 - особенности изделий низкого давления

В перечень ртутных изделий низкого давления входят линейные и компактные люминесцентные лампы , доступные для организации бытовых осветительных систем в жилых, офисных и рабочих помещениях.

По форме они могут быть кольцевыми, линейными, U-образными и стандартными.

Приборы низкого давления лучше всего проявляют себя при температуре окружающего воздуха в 18-25 °C. Отклонения от этих цифр плохо сказываются на работе, снижая насыщенность, яркость и силу светопотока

Спектральная цветопередача превышает показатели традиционных ламп накаливания. В температуре свечения преобладают натуральные оттенки.

Изделия низкого давления вырабатывают равномерный, мягкий, не раздражающий глаз свет, достигающий по насыщенности 75 Лм/Вт. Их срок службы может составлять до 10 000 часов

В упрек устройствам ставят зависимость от температурных показателей окружающей среды, невозможность питания постоянным током и эффект периодической пульсации.

№2 - отличия ламп высокого давления

Основным представителем класса газоразрядных приборов высокого давления являются ртутьсодержащие дуговые лампочки (ДРЛ ) общего и узкоспециализированного назначения.

Первые монтируются в модули для организации наружных осветительных систем, а вторые применяются в некоторых промышленных отраслях, медицине и сельском хозяйстве.

В классических ДРЛ-лампочках для исправления цветопередачи излучаемого потока используется люминофорное покрытие. Оно наносится на внутреннюю поверхность колбы, обеспечивая более насыщенный, качественный свет

Мощность приборов находится в диапазоне от 50 до 1000 Вт. Лампы подходят для общего освещения магистралей, улиц, придомовых территорий, крытых и открытых площадок, цехов, складов и прочих объектов, где не предусмотрено постоянное пребывание людей.

В этот же класс входят более прогрессивные ртутно-вольфрамовые лампы. Имеют аналогичные показатели, но от простых ртутных отличаются тем, что ртутно-вольфрамовые лампы могут корректно подключаться к сети без пускорегулирующего аппарата.

Эту возможность обеспечивает вольфрамовая нить. Она играет одновременно две роли: являясь накальным источником света, параллельно служит еще и ограничителем электрического тока.

Дуговые металлогалогены (ДРИ ) тоже принадлежат к разряду ртутных ламп. Их главное отличие заключается в специальных излучающих добавках, которые значительно повышают эффективность свечения.

Для подключения к электрической сети в цепь необходимо встраивать дроссельный элемент.

Колба металлогалогенов бывает эллипсоидной или цилиндрической. Внутри находится не стандартная кварцевая горелка, а более эффективная и надежная керамическая

Лампы этого типа актуальны для подсветки зданий, исторических объектов и архитектурных сооружений, спортивных арен, футбольных полей, торговых, рекламных и выставочных залов как крытых, так и располагающихся на открытом воздухе.

Металлогалогенные ртутные модули с зеркальным слоем (ДРИЗ ) по функционалу схожи с ДРИ-приборами. Однако, за счет плотного слоя зеркального покрытия способны давать насыщенный луч света, который можно направить в определенную область.

Изделия ДРИЗ максимально эффективны в условиях слабой и плохой видимости. С их помощью легко и удобно освещать конкретные объекты, к которым требуется привлечь внимание

Ртутно-кварцевые трубчатые лампы (ДРТ ) имеют колбу в форме удлиненного цилиндра, где на торцах располагаются рабочие электроды. Применяются для УФ-сушки, светокопировальных работ и прочих узкотехнологических целей.

№3 - нюансы модулей сверхвысокого давления

Шаровые устройства ртутно-кварцевого типа (ДРШ ) принадлежат к классу ламп сверхвысокого давления. Специфическая округлая форма колбы позволяет выдавать интенсивное излучение при относительно небольшой базовой мощности и компактном размере.

Для работы ДРШ-устройства требуется блок питания. Он помогает активировать лампу и осуществляет начальный розжиг горелки

Область применения таких агрегатов гораздо уже. Обычно их эксплуатируют в проекционных системах и разноплановом лабораторном оборудовании, например, в мощных микроскопах.

Оттенки излучения приборов

Внутри изделия со ртутью содержится люминофор. Благодаря его наличию, исходящий светопоток имеет насыщенный яркий оттенок, максимально приближенный к естественному белому цвету.

Нейтральный тон светопотока в лампах удается получить в результате корректного смешивания излучений газовых веществ, имеющихся в колбе, с люминофорными составляющими

Ртутные пары, сосредоточенные во внутриколбовом пространстве, способны регенерировать не только естественно-белое, но и цветное освещение, например, оранжевое, зеленое, фиолетовое или синее.

Достоинства и недостатки ртутных ламп

Некоторые специалисты называют ртутные источники света технически устаревшими и рекомендуют сокращать их использование не только в бытовых, но и в промышленных целях.

Однако, такое мнение несколько преждевременно и газоразрядные лампы еще рано списывать со счетов. Ведь есть места, где они проявляют себя на высшем уровне и обеспечивают яркий, качественный свет при разумном потреблении.

Плюсы газоразрядных модулей

  • высокая и эффективная светоотдача на протяжении всего эксплуатационного периода – от 30 до 60 Лм на 1 Ватт;
  • широкая линейка мощностей на классических видах цоколей E27/E40 – от 50 Вт до 1000 Вт в зависимости от модели;
  • пролонгированный срок службы в обширном температурном диапазоне окружающей среды – до 12 000-20 000 ч;
  • хорошая морозостойкость и корректная работа даже при низких показателях термометра;
  • возможность использовать источники света без подключения ПРА – актуально для вольфрамово-ртутных устройств;
  • компактные размеры и хорошая прочность корпуса.

Максимальную отдачу приборы высокого давления демонстрируют в системах уличного освещения. Отлично проявляют себя в рамках подсветки крупногабаритных крытых помещений и открытых площадок.

Минусы ртутьсодержащих изделий

Как и у всякого другого технического элемента, у ртутных газоразрядных модулей имеются некоторые недостатки. Этот перечень содержит всего несколько позиций, которые обязательно нужно учитывать при организации осветительной системы.

Первый минус – это слабый уровень цветопередачи R a , в среднем не превышающий 45-55 единиц. Для освещения жилых помещений и офисов этого мало.

Поэтому в местах предъявления повышенных требований к спектральному составу светопотока ртутные лампы монтировать нецелесообразно.

Ртутные приборы не способны передать в полном объеме оттеночную гамму цветового спектра человеческих лиц, интерьерных элементов, мебели и прочих мелких предметов. Зато на улице этот недостаток практически незаметен

Низкий порог готовности к включению тоже не прибавляет привлекательности. Чтобы войти в режим полноценного свечения, лампа обязательно должна разогреться до нужного уровня.

Обычно на это уходит от 2 до 10 минут. В рамках уличной, цеховой, промышленной или технической электросистемы это большого значения не имеет, но в домашних условиях оборачивается существенным недостатком.

Если в момент функционирования прогретая лампа вдруг отключается по причине падения напряжения в сети или из-за других обстоятельств, включить ее сразу не представляется возможным. Сначала прибор должен полностью остыть и только потом его получится снова активировать.

Возможность регулировки яркости подаваемого света у изделий отсутствует. Для их корректной работы обязательно требуется определенный режим подачи электрики. Все происходящие в нем отклонения негативно сказываются на источнике света и в разы снижают его рабочий ресурс.

Проблемный момент функционирования ртутьсодержащих элементов – режим базового старта и последующего выхода на номинальные параметры работы. Именно в это время прибор получает максимальную нагрузку. Чем меньше активаций испытывает лампочка, тем дольше и надежнее она служит

Переменный ток действует на газоразрядные осветительные приборы крайне негативно и в итоге приводит к возникновению мерцания с сетевой частотой в 50 Гц. Устраняют этот неприятный эффект с помощью электронных ПРА, а это влечет за собой дополнительные материальные расходы.

Сборка и установка ламп должны происходить строго по схеме, разработанной квалифицированными специалистами. При монтаже необходимо использовать только качественные термопрочные комплектующие, устойчивые к серьезным эксплуатационным нагрузкам.

В процессе использования ртутных модулей в жилых и рабочих помещениях колбу желательно закрывать специальным защитным стеклом. Во момент неожиданного взрыва лампы или короткого замыкания это обезопасит людей, находящихся рядом, от травм, ожогов и других повреждений.

В чем опасность для человека?

Нарушение целостности колбы представляет большую проблему, потому что ртуть, попадая в атмосферу, вредит всему вокруг .

Вышедшее из строя изделие не подлежит хранению в домашних условиях и не подходит для выброса в обычный мусорный контейнер.

В северных округах России запущен экологический проект «Утилизируй правильно». В рамках этого мероприятия на улицах городов расставлены специальные контейнеры, куда население может складывать отработавшие свой ресурс ртутные и люминесцентные лампочки

Изделие подлежит правильной утилизации в соответствии с принятыми нормативами. Делать это могут только организации, имеющие специальную лицензию.

В их обязанности входит прием ламп от населения, транспортировка, хранение их на складе, оборудованном герметичными боксами, и последующая утилизация.

Процесс переработки осуществляется такими способами, как:

  • амальгамирование;
  • демеркуризация;
  • термообработка;
  • высокотемпературный обжиг;
  • технология на вибропневматике.

Наиболее уместный вариант уничтожения выбирает утилизатор. Все дальнейшие действия проводятся строго по инструкции, регламентирующей процесс.

В небольших городах России программа утилизации организована несколько по-другому. Там раз в месяц в определенные места выезжает спецтранспорт, и работники уполномоченных предприятий принимают у населения отработанные источники света с токсичным наполнением

В начале осени 2014 года РФ поставила подпись под международным документом – Минаматской конвенции о ртути. Согласно содержащейся там информации с 2020 года все ртутьсодержащие продукты будут запрещены к производству, импорту и экспорту.

Среди источников освещения под это положение подпадают паросветные ртутные лампы высокого давления, в частности, модули с маркировкой ДРИ и ДРЛ.

Обзор лучших моделей на рынке

Так как лампочки, оснащенные токсичной ртутью, преимущественно используют в наружных осветительных системах, крытых промышленных и технических помещениях, а в быту применяют крайне редко, их внешний вид не отличается оригинальностью.

Место #1 - лампочки торговой марки Osram

Даже солидные бренды придерживаются классики и не считают нужным придавать приборам необычную форму и сложную конфигурацию.

Приборы ртутного типа можно установить в гараже. Они обеспечат стабильный и яркий поток света, способствующий концентрации внимания

Ртутные модули HQL Standart , изготовленные на предприятиях Osram, надежны и не боятся интенсивных эксплуатационных нагрузок. Диапазон мощности очень широк и начинается с 50 Вт, а заканчивается 1000 Вт.

Для корректного подключения ламп и последующей нормальной работы требуется установка пускорегулирующего аппарата.

Приборы ртутного типа от германского бренда Osram подходят для освещения крупногабаритных складских и производственных помещений, в которых максимальные требования предъявляются к яркости излучения, а к уровню цветопередачи столь жестких претензий нет

Изделия выпускаются с каплевидной матовой колбой, оснащаются люминофорным покрытием и цоколем E27/E40. Внутренняя горелка изготовляется из прочного кварца.

Приборы меньшей мощности, до 125 Вт, передают нейтрально-белое свечение, а модули от 250 Вт и выше вырабатывают чуть более естественный дневной свет.

Лампочки Osram, сделанные на ртутно-вольфрамовой основе, по всем характеристикам превосходят привычные газоразрядные. Срок их службы гораздо длиннее, а область применения обширнее. Второй параметр обусловлен улучшенным спектром цветового свечения модулей.

При мощности в 160 Вт изделия вырабатывают свет в 3600 К, приближенный к теплой гамме. Более белый оттенок в 3800 К дают лампы в 250 Вт. И только 500-ваттные обеспечивают нейтральное белое свечение в 4000 К.

Такие модули подходят для создания привлекательного, яркого и эффектного освещения в парковых зонах, на открытых пространствах и центральных городских аллеях, прогулочных зонах, концертных залах и прочих местах массового, но не постоянного пребывания людей.

Место #2 - ассортимент компании Philips

По большей части применяются для обустройства наружного освещения открытых площадок, придомовых территорий и прочих мест подобного плана.

Внутри колбовой части лампочек Филипс располагается кварцевая горелка высокого давления, наполненная парами ртути и смесью аргона. Выдаваемый светопоток в зависимости от мощности составляет 1800 Лм у 50W прибора и до 58 500 ЛМ у модуля в 1000 ВТ

Особенность изделий состоит в том, что они не теряют время на розжиг, а сразу же с момента активации обеспечивают равномерное, яркое и качественное освещение пространства.

Каплевидная матовая колба изготовляется в двух вариантах:

  • SG – легкоплавкое стекло с люминофорным покрытием, нанесенным в три слоя;
  • HG – тугоплавкое стекло, иногда содержащее некоторое количество кварца - демонстрирует увеличенную стойкостью к рекордно высоким температурам.

SG-элементы используют для ламп низкой и средней мощности, а HG применяют в модулях от 500 Вт до 1000Вт.

Оттеночная гамма источников света составляет 3900-4200 К. Эти цифры обозначают нейтральный оттенок свечения, приближенный к естественному. Фирменная гарантия дается на 1 год.

В серию ML входят инновационные ртутно-вольфрамовые лампы с люминофорным внутриколбовым покрытием. Их отличительная черта – однородный, насыщенный и яркий поток света с высокоуровневой цветопередачей.

Выпускаются с цоколями E27/E40 и имеют базовую мощность в 100, 160, 250 и 500 Вт.

При помощи ртутно-вольфрамовых модулей ML можно создать на придомовой территории приятное глазу, эстетичное, экономичное и долговечное освещение

Температура светопотока колеблется в пределах 3400-3700 К. Лампы такого типа можно назвать одними из самых теплых в своем классе. Их удобно использовать не только для уличного освещения, но и для больших магазинов, концертных залов и торговых центров.

Место #3 - предложения торговой марки Delux

Молодой и перспективный украинский бренд Delux, зарегистрированный в 2005 году, вполне успешно конкурирует с зарубежными производителями. Основные предприятия торговой марки располагаются на промышленных площадках Китая.

Высокий уровень изготовления и безупречное качество сборки делают лампы Delux актуальными и востребованными.

Модуль ртутного типа Delux обеспечивает мощный светопоток с хорошим уровнем рассеивания. Фирменная гарантия дается на 12 месяцев при условии соблюдения базовых правил и условий эксплуатации, указанных в сопроводительных документах

Стандартные изделия представлены линейкой GGY и предназначены для эффективного наружного применения. Рабочая колба имеет слегка вытянутую каплевидную форму.

Металлическим цоколем E27 оснащаются модели мощностью в 125 Вт. Остальные изделия комплектуются цокольным элементом E40. Диапазон их мощности располагается в пределах 250-1000 Вт.

Более прогрессивная серия ртутно-вольфрамовых приборов GYZ включает в себя модули E27/E40 с рабочей мощностью в 160, 250 и 500W.

Изделия надежно и долго служат, в течение всего времени вырабатывая плотный и насыщенный поток света с оптимальным уровнем цветопередачи.

Выводы и полезное видео по теме

Как выглядит и работает лампа ртутного типа, изготовленная на производственных мощностях немецкой компании Osram. Подробный осмотр упаковки, описание указанных цифровых обозначений и буквенных аббревиатур:

О ртутных модулях ДРЛ-типа во всех подробностях. Общий обзор изделия от Philips, нюансы способов подключения к патрону и особенности последующей эксплуатации:

Сюжет об утилизации ламповых изделий ртутного типа. Почему важно, чтобы этот процесс осуществляли профессионалы и обязательно с использованием специального профильного оборудования:

Лампочки ртутного типа еще используются довольно широко, однако, это время постепенно заканчивается . С рынка их вытесняют более прогрессивные, экономичные, эстетично привлекательные и безопасные устройства. Правда, не слишком высокая стоимость и продолжительный срок службы еще играют свою роль, нередко заставляя покупателей по старой памяти отдавать предпочтение ртутьсодержащим приборам.

Cтраница 1


Спектр излучения ртутной лампы имеет максимум при длине волны 365 нм.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев, содержащих диазосоединеняя, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер 77 ] наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Спектр излучения ртутных ламп среднего давления имеет много линий высокой интенсивности, но интенсивность линии 253 7 нм резко уменьшается.  

В спектрах излучения ртутных ламп наряду с линиями при повышении давления все более интенсивным становится сплошной спектр, так называемый фон. При очень высоком давлении (несколько десятков атмосфер) спектры становятся сплошными с отдельными максимумами в тех местах, в которых при низких давлениях находились линии.  

Результаты этих опытов и других наблюдений позволяют, с некоторым приближением к истине, заключить, что гексахлоран гасит ту часть спектра излучения ртутной лампы, которая способствует образованию - у-изомера.  


Спектр излучения ртутных ламп имеет линейчатую структуру, и при экспозиции светочувствительных слоев содержащих диазосоединения, активно действует свет с длинами волн 3650, 4050 и 4358 А. В промежутках между этими линиями излучение лампы (фон непрерывного излучения) незначительно и только у источников высокого и сверхвысокого давления величина фона достигает 0 1 - 0 25 интенсивности излучения главных линий. Из сказанного следует, что даже при небольшом смещении области поглощения диазотипного материала относительно положения главных линий спектра ртути возможно понижение чувствительности материала. Тэрнер наблюдал, в частности, значительные расхождения между найденной экспериментально и вычисленной величинами энергии выхода при облучении диазосоединения монохроматическим светом с длиной волны 3650 А и нашел, что относительная чувствительность при 3130 А составляет только 25 % от чувствительности при 3650 А.  

Часто в приборах барабан длин волн, связанный с механизмом поворота призмы или решетки, отградуирован в относительных единицах. В качестве стандартного спектра в видимой и ультрафиолетовой области используют спектр излучения ртутной лампы, который состоит из небольшого числа интенсивных линий. Подобную калибровку по стандартному веществу следует периодически повторять, поскольку в процессе работы установленное соответствие нарушается.  

С этой целью вместо солнечного света образец освещают лампами, интенсивность свечения которых можно сравнивать с прямым солнечным светом. Обычно светильниками служат угольная дуга или ксеноновые лампы высокого давления; иногда используют ртутные лампы. В спектре излучения ртутных ламп преобладают ультрафиолетовые лучи, являющиеся наиболее активно действующим компонентом дневного света в процессе выцветания; поэтому применение этих ламп способствует добавочному ускорению испытаний. Экстраполяция результатов корреляции для неизвестных материалов может привести к ошибкам.  

Перед началом измерений установку градуируют по длинам волн. Для этого входную часть спектрографа - ЙСП-51 освещают источником света, обладающим линейчатым спектром с широко расставленными линиями, длины волн которых хорошо известны. Далее осуществляют запись и расшифровку спектра излучения ртутной лампы и устанавливают зависимость между длинами волн ее отдельных линий (пиков на бланке самописца) и делениями барабана, связанного с моторчиком, вращающим призменную часть спектрографа. По этим данным строят дисперсионную кривую установки.