Микроконтроллер ESP8266: подключение и настройка. Обновление прошивки Wi-Fi модуля ESP8266

Как проверить ESP8266

Для проверки ESP8266, который вы только что приобрели, потребуется .

Внимание! Допустимый диапазон напряжения питания модуля ESP8266 от 3,0 до 3,6 вольт. Подача повышенного напряжения питания на модуль гарантированно приведет к выходу ESP8266 из строя.

Чтобы проверить ESP8266 ESP-01 достаточно подключить три пина: VCC и CH_PD (chip enable) к питанию 3,3 вольт, а GND к земле. Если у вас не ESP-01, а другой модуль и на нем выведен GPIO15, то дополнительно еще потребуется подключить GPIO15 к земле.

При успешном старте заводской прошивки на модуле ESP8266 загорится красный светодиод (индикатор питания, на некоторых версиях модуля, например ESP-12, может отсутствовать) и пару раз мигнет синий (это индикатор передачи данных от модуля к терминалу по линии TX-RX, может иметь другой цвет) и в вашей беспроводной сети должна появится новая точка доступа с именем «ESP_XXXX», которую вы сможете увидеть с любого WiFi устройства. название точки доступа зависит от производителя прошивки и может быть другим, например AI-THINKER_AXXXXC. Если точка доступа появилась, то можно продолжить эксперименты далее, если нет, то еще раз проверьте питание, CH_PD, GND и если все подключено правильно то, скорее всего, у вас неисправный модуль, но есть надежда, что прошивка в модуле с нестандартными настройками и, возможно, вам поможет перепрошивка.

Как быстро подключить ESP8266

В минимальный набор для подключения и прошивки модуля ESP8266 входит:

Внимание! На правом рисунке подключение UTXD (TX) и URXD (RX) модуля ESP8266 к пятивольтовой TTL логике вы осуществляете на свой страх и риск! Документация на SoC ESP8266 сообщает, что модуль толерантен только к 3.3 вольтовой логике. В большинстве случаев подключение ESP8266 к пятивольтовой логике НЕ ПРИВОДИТ к выходу из строя ESP8266, однако именно вашему модулю может не повезти. Для исключение риска выхода модуля ESP8266 из строя рекомендуется использовать USB-TTL конвертер на 3,3 вольта, либо TTL 5v-3.3v конвертеры либо делитель на резисторах (на рисунке не показан). Более подробно о согласовании логических уровней можете прочитать . Рисковые гики, вроде меня, подключают ESP8266 к пятивольтовой TTL логике напрямую и не заморачиваются.

Внимание! На правом рисунке показано подключение стабилизатора питания 1117 без дополнительной обвязки. Это работает, но все же, мы рекомендуем использовать схему подключения с конденсаторной обвязкой — сверьте схему подключения с даташитом на ваш стабилизатор либо используйте готовый модуль на базе 1117 .

ESP8266 — подключение

Красный — питание 3,3в

Черный — GND

Желтый — на стороне ESP8266 — RX, на стороне USB-TTL — TX

Зеленый — на стороне ESP8266 — TX, на стороне USB-TTL — RX

Оранжевый — CH_PD (CHIP ENABLE) — должен быть всегда подтянут к питанию

Синий — GPIO0 — подключен через выключатель к земле для включения режима перепрошивки модуля. Для обычного старта модуля GPIO0 можно оставить никуда не подключенным.

Розовый на правой схеме — нестабилизированное питание 5-8 вольт

4. Для старта модуля разорвите цепь GPIO0 — GND и можете подавать питание (причем именно в таком порядке: сначала убеждаемся, что GPIO0 «висит в воздухе», затем подаем питание на VCC и CH_PD)

Внимание! В вышеприведенных, реально работающих, примерах подключения ESP8266 используется подключение выводов ESP8266 «напрямую» к земле и питанию, либо «висячее в воздухе», как у нас никуда не подключен RESET, что является абсолютно неправильным и пригодно только для пары первых экспериментов, хотя и вполне работоспособно на подавляющем большинстве модулей. «Напрямую» к питанию подключается только вывод VCC, остальные выводы: CH_PD, RESET, GPIO0, GPIO2, должны быть подтянуты (pullup) к питанию (VCC) через резистор от 4,7 до 50 кОм. «Напрямую», к минусу (общему проводу) питания подключаем только GND, а GPIO0 подтягиваем (pulldown) тоже через резистор до 10k к GND для перевода модуль в режим загрузки прошивки. Если вы планируете и дальше экспериментировать с ESP8266, то сделайте , впрочем так же как и для любых других микроконтроллеров. Детальное описание pullup и pulldown выходит за рамки данной статьи, но вы сможете легко нагуглить описание правильного подключения портов ввода-вывода. « » подключение позволит вам избежать множества «чудес» и проблем и будет неизбежно необходимым при возникновении затруднений с запуском или перепрошивкой модуля ESP8266.

Как правильно подключить ESP8266

Если вы планируете заниматься с ESP8266 больше, чем один вечер, то вам потребуется вариант подключения, обеспечивающий более высокую стабильность. Ниже приводятся две схемы подключения: с поддержкой автозагрузки прошивки из , и без нее.

Схема подключения ESP8266 (без автозагрузки прошивки, прошиваемся предварительно установив перемычку BURN и перезагрузив модуль)

Схема подключения с поддержкой автозагрузки прошивки из Arduino IDE, UDK, Sming. Для Flash Download Tool и XTCOM_UTIL, возможно, потребуется отключение RTS/DTR. Если RTS и DTR вам отключать неудобно, то можно добавить в схему перемычки

На этих схемах не показано подключение ADC и свободных GPIO — их подключение будет зависеть от того, что вы захотите реализовать, но если хотите стабильности, то не забудьте притянуть все GPIO к питанию (pullup), а ADC к земле (pulldown) через подтягивающие резисторы.

Резисторы на 10k могут заменены на другие от 4,7k до 50k, за исключением GPIO15 — его номинал должен быть до 10k. Номинал конденсатора, который сглаживает высокочастотные пульсации, может быть другим.

Соединение RESET и GPIO16 через резистор deep sleep на 470 Ом вам потребуется, если вы будете использовать режим deep sleep: для выхода из режима глубокого сна модуль перезагружает сам себя, подавая низкий уровень на GPIO16. Без этого соединения глубокий сон будет вечным для вашего модуля.

На первый взгляд на этих схемах кажется, что GPIO0, GPIO2, GPIO15, GPIO1 (TX), GPIO3 (RX) заняты и вы не можете их использовать для своих целей, но это не так. Высокий уровень на GPIO0 и GPIO2, низкий на GPIO15 требуются только для старта модуля, а в последующем вы можете использовать их по своему усмотрению, только не забудьте обеспечить требуемые уровни до перезагрузки модуля.

Можно использовать и TX, RX как GPIO1 и GPIO3 соответственно, не забывая о том, что при старте модуля любая прошивка будет дергать TX, отправляя отладочную информацию в UART0 на скорости 74480, но после успешной загрузки вы можете использовать их не только как UART0 для обмена данными с другим устройством, но и как обычные GPIO.

Для модулей, имеющих меньшее количество разведенных пинов, как например, ESP-01 подключение неразведенных пинов не требуется, т.е. на ESP-01 разведены только: VCC, GND, GPIO0, GPIO2, CH_PD и RESET — вот только их и подтягиваете. Нет никакой необходимости припаиваться прямо к микросхеме ESP8266EX и притягивать неразведенные пины, только если вам это .

Данные схемы подключения родились после множества экспериментов, проведенных нашими форумчанами и собраны по крупицам из разрозненной и недоступной изначально документации нашим сообществом, я всего лишь постарался объединить эти знания в одном месте. Множество советов по подключению вы найдете . Там же вы сможете задать интересующие вас вопросы или найти . Если вы увидели ошибку, неточность в этой статье или вам есть что добавить, то .

Внимание! Даже эти схемы нельзя назвать «идеальными». Совершенству нет предела: удобно подключить второй USB-TTL к UART1 (c ESP8266 можно взять только GND и UTXD1, т.е. GPIO2) для подключения отладочного терминала (потребуется второй USB-TTL конвертер) — тогда можно будет прошивать модуль ESP8266 через UART0 без отключения терминала отладки на UART1. Неплохо будет подключить резисторы малого номинала к выводам обоих UART, поставить диод в линию RTS, добавить конденсатор в линию питания для гашения низкочастотных импульсов и т.д. Очень удобно, например, сделано в этой отладочной плате : на все GPIO подключены светодиоды, на ADC подключен фоторезистор, но жаль, что нет кнопки RESET и перемычка только одна на GPIO0.

Правильным будет сказать вам, что не существует идеальной и в тоже время универсальной схемы подключения ESP8266. Все дело в том, что очень многое зависит от прошивки, которую вы собираетесь туда залить. Вышеприведенные схемы рассчитаны на новичков, которые только начинают осваивать ESP8266, для экспериментов. Для реальных проектов, возможно, вам придется немного изменить схему. Например, для нужно подключить RTS к GPIO15, а CTS к GPIO13. Также в реальных проектах рекомендую уделить особое внимание питанию.

Подключение ESP8266 через Arduino

Если у вас под рукой не оказалось USB-TTL конвертера на 3,3в, но есть Arduino со встроенным USB-TTL конвертером, то можно использовать такую схему подключения

На что обратить внимание:

1. Arduino Reset подключен к GND (синий провод) чтобы не запускался микроконтроллер на Arduino, в данном виде мы используем Arduino как прозрачный USB-TTL конвертер

2. RX и TX подключены не «на перекрест», а прямо — RX — RX (зеленый), TX — TX (желтый)

3. Все остальное подключено так же, как и в предыдущих примерах

Внимание! В этой схеме также требуется согласовывать уровни TTL 5 вольт Arduino и 3.3 вольта на ESP8266, однако неплохо работает и так.

Внимание! На Arduino может быть установлен стабилизатор питания, который не выдержит ток, требуемый для ESP8266, поэтому прежде, чем производить подключение сверьтесь с даташитом на тот стабилизатор, который установлен именно у вас. Не подключайте другие энергопотребляющие компоненты одновременно с ESP8266 в связи с риском выхода из строя встроенного в Arduino стабилизатора питания.

С подключением к последовательному порту придется немного поколдовать: в связи с разнообразием прошивок для ESP8266, подключение может осуществляться на разных скоростях. Нужную скорость можно определить путем простого перебора трех вариантов: 9600, 57600 и 115200. Как осуществить перебор? Подключаетесь в терминальной программе к вашему виртуальному последовательному порту выставив следующие параметры: 9600 8N1, затем перезагружаете модуль, отключив CH_PD (chip enable) от питания (USB-TTL при этом остается подключенным к USB) и снова включаете (т.е. просто передергиваете CH_PD, почему не передергиваем питание — читаем , также можно кратковременно замкнуть RESET на землю для перезагрузки модуля) и наблюдаете данные в терминале. Во-первых, светодиоды на ESP8266 должны гореть как описано в начале статьи в разделе . Во-вторых, в терминале вы должны увидеть «мусор» из разных символов, оканчивающийся строкой «ready». Если «ready» мы не видим, то переподключаемся терминалом на другой скорости и снова перезагружаем модуль.

На одном из вариантов скорости «ready» вы все-таки увидите — поздравляем, ваш модуль готов к работе. Если нет, то добро пожаловать — мы постараемся помочь, но предварительно почитайте .

Немного подробнее о «мусоре». Дело в том, что при старте прошивки, UART модуля ESP8266 переключается на скорость передачи 74 880 (вот такие забавные эти китайцы) выдает в UART отладочную информацию, затем переключает скорость порта на 115200 (ну или на 9600 или 57600 в зависимости от версии прошивки), так вот эта отладочная информация и видится нам как мусор, т.к. мы подключаемся к модулю на другой скорости. Можете подключится к ESP8266 на скорости 74 880 ( поддерживает эту скорость) и вы эту отладочную информацию увидите, будет что-то вроде этого:

wdt reset load 0x40100000, len 25052, room 16 tail 12 chksum 0x0b ho 0 tail 12 room 4 load 0x3ffe8000, len 3312, room 12 tail 4 chksum 0x53 load 0x3ffe8cf0, len 6576, room 4 tail 12 chksum 0x0d csum 0x0d

wdt reset

load 0x40100000 , len 25052 , room 16

load 0x3ffe8cf0 , len 6576 , room 4

tail 12

chksum 0x0d

csum 0x0d

НО! не увидите «ready» и не сможете управлять модулем, пока не переподключитесь на ту скорость, на которой работает прошивка.

Что делать дальше

Если у вас новый модуль, то, скорее всего, в нем прошита одна из старых кастомных AT прошивок. Скорее всего это какой-нибудь AI-THINKER AT v0.16 SDK v0.9.2. Проверить версию прошивку вы можете командой «AT+GMR», т.е. прямо в терминальной программе набираете AT+GMR без кавычек и жмете Enter. Модуль должен ответить «OK» и выдать версию прошивки (например, «0016000092» — в разных версиях AT прошивок формат вывода версии отличается). Управление модулем ESP8266 AT командами заслуживает отдельной статьи, однако вы легко сможете разобраться с этим и сами, воспользовавшись одним из наших справочников по AT командам:

На момент написания этой статьи)

2. Скачайте одну из утилит для прошивки ESP8266 в зависимости от вашей операционной системы из раздела с нашего сайта

… Вообщем, этот материал не ограничивается только одной темой Ардуино.

Тема ESP8266 - довольно таки непростая. Но, если работать с этими Wi-Fi модулями в среде разработки Arduino IDE - порог вхождения опускается до приемлемого для обычного ардуинщика уровня. Да и не только ардуинщика, а любого человека, у которого есть желание сварганить что-то по теме , причём не затрачивая много времени читая документацию для микросхемы и изучение API для этих модулей.

Данное видео, полностью дублирует материал, представленный в статье ниже.

Ну что же, мы уже умеем подключать ESP8266 и переводить его в режим программирования, теперь давайте перейдём к чему-то более полезному.

Скажу сразу - один раз запрограммировав модуль в среде разработки ардуино, мы сносим родную прошивку, и у нас пропадёт возможность работать с модулем при помощи AT-команд. Лично мне, от этого, не холодно/не жарко, но если кому-то это будет нужно - ближе к концу статьи я покажу, как обратно прошить в модуль родную прошивку, ну или какой-то загручик типа NodeMcu.

Для начала, на офф.сайте качаем последнюю версию Arduino IDE , на данный момент это 1.6.7. Более старые версии типа 1.0.5. не подойдут, потому что банально не имеют нужного функционала, а танцы с бубном нас не интересуют, не так ли?

Запускаем среду разработки и тут же идём в Файл/Настройки:

Http://arduino.esp8266.com/stable/package_esp8266com_index.json

Потом идём Инструменты/Плата:/Менеджер плат...:

Перед нами появится окно менеджера плат, листаем его до самого низа, и если всё сделано правильно мы увидим что-то подобно этому:

Кликаем курсором по надписи "esp8266 by ESP8266 Community " после этого, у нас появилась кнопка «Установка», выбираете нужную версию, я беру последнюю, на сегодняшний день это 2.1.0. и устанавливаю её. Среда разработки закачает нужные ей файлы(около 150 мегабайт) и напротив надписи "esp8266 by ESP8266 Community " появится «INSTALLED» то есть установлено:

Листаем список плат вниз и видим, что в списке у нас появилось много разных ESP, берём «Generic ESP8266 Module»:

Идём в «Инструменты» и выбираем нужный COM порт(у меня это COM32) , потом ставим Upload Speed:«115200»:

Выставляем скорость 74880 и «NL & CR» и опять же отключаем и подаём питание и он ответит кое какой отладочной информацией:

Заметьте, 74880 - не основная скорость ESP8266, просто он всего лишь на ней отправляет отладочную информацию. Если модуль ничего не отправляет в консоль, тогда возможно что-то подключили не так как надо.

По умолчанию скорость должна быть 115200, но в отдельных случаях может быть и 9600 и другие… Так что попробуйте подобрать.

После подбора нужной скорости отправляем модулю «AT» и он должен ответить что всё «ОК». Команда «AT+GMR» выводит информацию о прошивке.

Прежде чем начать прошивать ESP8266 в Arduino IDE я советую дочитать статью до конца.

Теперь давайте попробуем прошить ESP8266 через Arduino IDE. Переводим модуль в режим программирования(как это сделать я писал в ).

Давайте зашьём мигалку штатным светодиодом:

// By MrПоделкинЦ youtube.com/RazniePodelki // special to сайт/post/271754/ #define TXD 1 // GPIO1/TXD01 void setup() { pinMode(TXD, OUTPUT); } void loop() { digitalWrite(TXD, HIGH); delay(1000); digitalWrite(TXD, LOW); delay(1000); }

Замигал? Значит всё сделано правильно. Откуда я взял что светодиод подключен на первый пин? В предыдущей статье есть картинка с распиновкой разных модулей , и там есть разметка портов, при использовании загрузчика Arduino(пины отмечены розовым цветом).

Мигание светодиодом это конечно хорошо, но надо бы какой-то веб-сервер заделать или начать управлять светодиодом хотя бы при помощи кнопок в браузере, не так ли? Но об этом я расскажу уже как-нибудь в другой раз.

А теперь как прошить назад родную прошивку , да и как вообще прошивать модуль сторонними загрузчиками. Для ESP8266 есть такая программа как NodeMCU Flasher , которая изначально предназначена для прошивки загрузчика NodeMCU . Но как оказалось, она отлично прошивает и другие прошивки.

Я прикреплю к статье архив с данной программой и прошивкой для удобства, но всегда можно скачать новую версию NodeMCU Flasher.

В папке «nodemcu-flasher-master» есть 2 папки Win64 и Win32 и в зависимости от того какая разрядность у вашей ОС выбираем нужную. Дальше в папке Release запускаем «ESP8266Flasher.exe» и видим интерфейс программы:

Выбираем нужный COM порт и идём во вкладку «Config», убираем хрестик около «INTERNAL://NODEMCU» и ставим его на один пункт ниже, как на скрине:

(Если захотите прошить загрузчик NodeMCU - убираете хрестик там где его не было, и ставите - где он был, то есть около «INTERNAL://NODEMCU»).

Потом жмём по шестеренке и выбираем где лежит наша прошивка, прошивка как правило в формате *.bin(в прикреплённом архиве это «v0.9.5.2 AT Firmware.bin» которая лежит в основной папке), и так же выбираем «0x00000» как и выше.

Возвращаемся опять на вкладку «Operation» переводим модуль в режим программирования и жмём «Flash»:

Всё, модуль начал прошиваться, после перепрошивки не забываем перезагрузить модуль и вуаля, он прошит нужной нам прошивкой.

Проверяем AT-командой «AT+GMR» сделали ли мы всё верно:

Как видите всё нормально прошилось.

Многие пользователи уже успели обратить свое внимание на чип ESP8266-12, выпущенный компанией Espressif. Стоимость его значительно дешевле по сравнению со стандартной платой Bluetooth-адаптера, да и при меньших габаритах он отличается значительно более широкими возможностями. Теперь все домашние любители получили возможность работы в сети Wi-Fi сразу в двух режимах, то есть подключать свой компьютер к каким-либо точкам доступа или же включать его в качестве такой точки.

С другой стороны, нужно правильно понимать, что такие платы представляют собой не просто шилды, предназначенные только для связи по Wi-Fi. Сам по себе ESP8266 представляет собой микроконтроллер, имеющий собственные UART, GPIO и SPI-интерфейсы, то есть его можно использовать как абсолютно автономное оборудование. Многие после выхода данного чипа назвали его самой настоящей революцией, и с течением времени такие устройства начнут встраиваться даже в самые простые виды техники, но пока устройство является сравнительно новым и какой-либо стабильной прошивки на него нет. Многие специалисты по всему миру стараются изобретать собственные прошивки, ведь заливать их в плату на самом деле не составляет особого труда, но несмотря на различные трудности, устройство уже сейчас можно назвать вполне пригодным к работе.

На данный момент рассматривается только два варианта применения данного модуля:

  • Использование платы в комбинации с дополнительным микроконтроллером или же компьютером, которым будет осуществляться контроль над модулем через UART.
  • Самостоятельное написание прошивки для чипа, что позволяет потом использовать его в качестве самодостаточного устройства.

Вполне естественно, что рассматривать самостоятельную прошивку в данном случае мы не будем.

Глядя на удобство использования и хорошие характеристики, многие люди среди множества микроконтроллеров отдают свое предпочтение модели ESP8266. Подключение и обновление прошивки данного устройства является предельно простым и доступным, и производится на том же железе, на котором осуществляется подключение оборудования к компьютеру. То есть так же через USB-TTL-конвертер или, если кто-то предпочитает другие варианты подключения, может осуществляться через RPi и Arduino.

Как проверить?

Для того чтобы проверить работоспособность только что купленного устройства, вам нужно будет использовать специальный источник стабилизированного напряжения, рассчитанный на 3,3 вольта. Сразу стоит отметить, что реальный диапазон напряжения питания данного модуля составляет от 3 до 3,6 вольт, а подача повышенного напряжения сразу приведет к тому, что вы просто-напросто выведете из строя свой ESP8266. Прошивка и прочее программное обеспечение после подобной ситуации может начать некорректно работать, и вам уже нужно будет ремонтировать устройство или как-то его исправлять.

Чтобы определить работоспособность данной модели микроконтроллера, нужно просто подключить три пина:

  • CH_PD и VCC подключаются к питанию 3,3 вольт.
  • GND подключается к земле.

Если вами используется не ESP-01, а какой-либо другой модуль, и на нем уже изначально присутствует выведенный GPIO15, то в таком случае вам и его нужно будет дополнительно подключить к земле.

Если заводская прошивка запустилась нормально, то в таком случае можно увидеть а затем пару раз мигнет синий. Однако стоит отметить, что красный индикатор питания имеют не все устройства серии ESP8266. Прошивка на некоторых устройствах не предусматривает загорание красного индикатора, если в модуле он отсутствует (в частности, это относится к модели ESP-12).

После подключения в вашей беспроводной сети активируется новая точка доступа, которая будет называться ESP_XXXX, и ее можно будет обнаружить с любого устройства, имеющего доступ к Wi-Fi. В данном случае название точки доступа непосредственно зависит от производителя используемой вами прошивки, и поэтому может быть каким-нибудь другим.

Если точка действительно появляется, вы можете продолжать эксперименты, в противном случае нужно будет проводить повторную проверку питания, а также корректность подключения GND и CH_PD, а если все подключено верно, то, скорее всего, вы все-таки стараетесь использовать сломанный модуль или же на нем просто-напросто установлена прошивка с нестандартными настройками.

Как его быстро подключить?

Стандартный набор, необходимый для подключения данного модуля, включает в себя следующее:

  • сам модуль;
  • беспаечную макетную плату;
  • полноценный набор проводов мама-папа, предназначенные для макетной платы, или же специальный кабель DUPONT M-F;
  • USB-TTL конвертер на основе PL2303, FTDI или же каком-нибудь аналогичном чипе. Наиболее оптимальный вариант - если на USB-TTL адаптер также выводятся RTS и DTR, так как за счет этого можно добиться достаточно быстрой загрузки прошивки из какого-нибудь UDK, Arduino IDE или Sming, не имея даже необходимости в ручном переключении GPIO0 на землю.

Если вами используется конвертер на 5 вольт, то в таком случае нужно будет приобрести дополнительный стабилизатор питания на базе чипа 1117 или каком-либо аналогичном, а также источник питания (для стандартного 1117 вполне неплохо подойдет даже обыкновенная зарядка от смартфона на 5 вольт). Рекомендуется не использовать Arduino IDE или USB-TTL в качестве источника питания для ESP8266, а применять отдельный, так как за счет этого можно избавиться в конечном итоге от массы проблем.

Расширенный набор для обеспечения комфортной и постоянной работы с модулем предусматривает необходимость в использовании дополнительных резисторах, светодиодах и DIP-переключателях. Помимо этого, можно также использовать недорогой USB монитор, который позволит вам постоянно наблюдать за количеством потребляемого тока, а также обеспечит небольшую защиту шину USB от возникновения

Что нужно делать?

В первую очередь стоит отметить тот факт, что в ESP8266 управление может быть несколько разным в зависимости от того, какая конкретно модель вами используется. Таких модулей сегодня представлено достаточно много, и первое, что будет нужно, - это провести идентификацию используемой вами модели и определиться с ее распиновкой. В данной инструкции мы будем говорить о работе с модулем ESP8266 ESP-01 V090, и если вами используется какая-то другая модель с выведенным пином GPIO15 (HSPICS, MTDO), вам нужно будет притянуть его к земле как для стандартного старта модуля, так и для использования режима прошивки.

После этого дважды убедитесь в том, что питающее напряжение для подключенного модуля составляет 3,3 вольта. Как говорилось выше, допустимый диапазон составляет от 3 до 3,6 вольт, и в случае повышения устройство выходит из строя, но при этом питающее напряжение может быть даже значительно ниже 3 вольт, которые заявлены в документах.

Если вы используете USB-TTL конвертер на 3,3 вольта, то в таком случае подключите модуль точно так же, как на левой части картинки ниже. Если же вами применяется исключительно пятивольтовый USB-TTL, то обратите внимание на правую часть рисунка. Многим может показаться, что правая схема более эффективная за счет того, что в ней применяется отдельный источник питания, но на самом деле в случае применения USB-TTL конвертера на 5 вольт крайне желательно сделать также дополнительный делитель на резисторах, чтобы обеспечить согласование трехвольтовых и пятивольтовых уровней логики, или же просто использовать модуль преобразования уровней.

Особенности подключения

На правом рисунке присутствует подключение UTXD (TX), а также URXD (RX) данного модуля к пятивольтовой логике TTL, и проведение таких процедур осуществляется только на свой страх и риск. К ESP8266 описание говорит о том, что модуль эффективно работает только с 3,3-вольтовой логикой. В преимущественном большинстве случаев даже в случае работы с пятивольтовой логикой оборудование не выходит из строя, но изредка происходят такие ситуации, поэтому подобное подключение является не рекомендованным.

Если у вас нет возможности использовать специализированный USB-TTL конвертер на 3,3 вольта, можно применить делитель на резисторах. Также стоит отметить, что на правом рисунке стабилизатор питания 1117 подключается без дополнительной обвязки, и это действительно рабочая технология, но все-таки лучше всего пользоваться схемой подключения 1117 с конденсаторной обвязкой - нужно сверить ее с ESP8266 datasheet на ваш стабилизатор или использовать уже полностью готовый модуль, основывающийся на базе 1117.

Чтобы запустить модуль, нужно разорвать цепь GPIO0-TND, после чего можно подавать питание. При этом стоит отметить, что делать все нужно именно в таком порядке, то есть сначала убедитесь в том, что GPIO0 «висит в воздухе», и только потом уже подавайте питание на CH_PD и VCC.

Как подключать правильно?

Если вы можете уделить более одного вечера тому, чтобы нормально подключить модуль ESP8266, вы можете использовать более стабильный вариант. На схеме выше вы видите вариант подключения с автоматической загрузкой прошивки.

Стоит отметить, что на изображении выше не показывается использование свободных GPIO или ADC, и их подключение будет непосредственно зависеть от того, что конкретно вы хотите реализовать, но если же вы захотите обеспечить стабильность, не забывайте притягивать все GPIO к питанию, а ADC к земле с использованием подтягивающих резисторов.

Резисторы на 10k при необходимости можно заменить на какие-либо другие в диапазоне от 4,7k до 50k, исключая GPIO15, так как его номинал должен быть не более 10k. Номинал конденсатора, сглаживающего высокочастотные пульсации, может быть несколько иным.

Соединение RESET и GPIO16 через использование резистора deep sleep на 470 Ом может стать необходимым при использовании соответствующего режима, так как для того, чтобы выйти из режима глубокого сна, модуль осуществляет полную перезагрузку, осуществляя подачу низкого уровня на GPIO16. При отсутствии данного соединения режим глубокого сна для вашего модуля будет длиться вечно.

На первый взгляд, может показаться, что GPIO0, GPIO1 (TX), GPIO2, GPIO3 (RX) и GPIO15 заняты, поэтому использовать их для своих целей не получится, но на самом деле это далеко не так. Достаточно высокий уровень на GPIO0 и GPIO2, а также низкий на GPIO15 могут потребоваться только для первоначального запуска модуля, а в дальнейшем уже можно применять их на свое усмотрение. Единственное, что стоит отметить, - не забывайте обеспечивать нужные уровни до того, как осуществлять полную перезагрузку вашего оборудования.

Также можно использовать TX, RX в качестве альтернативы GPIO1 и GPIO3, но при этом не стоит забывать о том, что после старта модуля каждая прошивка начинает «дергать» ТХ, параллельно занимаясь отправкой отладочной информации в UART0 со скоростью 74480, но, после того как будет проведена успешная загрузка, их можно использовать не только в качестве UART0 для того, чтобы сделать обмен данных с другим устройством, но и в качестве стандартных GPIO.

Для модулей, у которых присутствует небольшое количество разведенных пинов (к примеру, ESP-01), не требуется подключения неразведенных пинов, то есть на ESP-01 разводятся только: GND, CH_PD, VCC, GPIO0, GPIO2 и RESET, и именно их вам нужно будет подтягивать. Нет никакой потребности в том, чтобы припаиваться непосредственно к микросхеме ESP8266EX, а затем притягивать неразведенные пины, если только это вам действительно нужно.

Такие схемы подключения использовались после большого количества экспериментов, проведенных квалифицированными специалистами и собраны из множества различной информации. При этом стоит отметить, что даже такие схемы нельзя считать идеальными, так как можно использовать целый ряд других, не менее эффективных вариантов.

Подключение через Arduino

Если у вас по какой-то причине не оказалось USB-TTL конвертера на 3,3 вольт, то в таком случае модуль WiFi ESP8266 можно подключить через Arduino со встроенным конвертером. Здесь вам нужно будет сначала обратить свое внимание на три основных элемента:

  • При использовании в работе с ESP8266 Arduino Reset изначально подключен к GND, чтобы исключить возможность запуска микроконтроллера, и в данном виде он использовался в качестве прозрачного USB-TTL конвертера.
  • RX и TX подключались не «на перекрест», а напрямую - RX-RX (зеленый), ТХ-ТХ (желтый).
  • Все остальное подключается точно так же, как указано выше.

Что нужно учитывать

В данной схеме также требуется согласование уровней TTL 5 вольт Arduino, а также 3,3 вольта на ESP8266, но при этом неплохо может функционировать и так.

При подключении к ESP8266 Arduino может оснащаться стабилизатором питания, не выдерживающим ток, который требуется для ESP8266, вследствие чего, перед тем как его активировать, нужно свериться с даташипом на тот, который используется у вас. Не пробуйте подключать какие-то другие энергопотребляющие элементы вместе с ESP8266, так как это может привести к тому, что встроенный в Arduino стабилизатор питания просто выйдет из строя.

Также есть другая схема подключения ESP8266 и Arduino, в которой используется SoftSerial. Так как для библиотеки SoftSerial скорость порта, равная 115200, имеет слишком высокое значение и не может гарантировать стабильную работу, такой способ подключения использовать не рекомендуется, хотя есть некоторые случаи, в которых все работает вполне стабильно.

Подключение через RaspberryPi

Если вы не располагаете вообще никакими USB-TTL конвертерами, то в таком случае можно использовать RaspberryPi. В данном случае для ESP8266 программирование и подключение осуществляется практически идентично, но при этом здесь все не так удобно, а дополнительно нужно будет использовать также стабилизатор питания на 3,3 вольта.

Для начала RX, TX и GND нашего устройства подключаем к ESP8266, а GND и VCC берем со рассчитанного на 3,3 вольта. Здесь отдельное внимание следует уделить тому, что нужно провести соединение всех GND устройств, то есть стабилизатора RaspberryPi и ESP8266. Если же встроенный в вашу модель устройства стабилизатор может выдерживать до 300 миллиампер дополнительной нагрузки, то в таком случае подключение ESP8266 осуществляется вполне нормально, но это все делается только на свой страх и риск.

Настраиваем параметры

Когда вы разобрались, как подключить ESP8266, нужно убедиться в том, что драйвера к вашим устройствам установлены корректно, вследствие чего в системе был добавлен новый последовательный виртуальный порт. Здесь нужно будет использовать программу - терминал последовательного порта. В принципе, утилиту можно подобрать любую на свой вкус, но при этом вы должны правильно понимать, что любая команда, которая будет отправляться вами в последовательный порт, в конце должна иметь завершающие символы CR+LF.

Достаточно широким распространением пользуются утилиты CoolTerm и ESPlorer, причем последняя позволяет не вводить ESP8266 самостоятельно, и при этом дает проще работать с lua скриптами под NodeMCU, поэтому ее можно вполне использовать в качестве стандартного терминала.

Для нормального подключения к придется проделать немало работы, так как прошивки для ESP8266 в большинстве своем являются разнообразными и активация может проводиться на разных скоростях. Чтобы определиться с наиболее оптимальным вариантом, вам нужно будет перебрать три основных варианта: 9600, 57600 и 115200.

Как перебирать?

Для начала подключитесь в терминальной программе к последовательному виртуальному порту, выставляя параметры 9600 8N1, после чего проводите полную перезагрузку модуля, отключая CH_PD (chip enable) от питания, после чего снова активируйте его, передергивая CH_PD. Также можно провести кратковременное замыкание RESET на землю для того, чтобы перезагрузить модуль, и наблюдать за данными в терминале.

В первую очередь светодиоды устройства должны отображаться точно так же, как это показано в описании процедуры проверки. Также вы должны наблюдать в терминале набор различных символов, который будет заканчиваться строкой ready, а если ее нет, проводится переподключение к терминалу на другой скорости с последующей перезагрузкой модуля.

Когда вы увидите на одном из вариантов скорости данную строку, можно считать модуль подготовленным к работе.

Как обновлять прошивку?

После того как вы установите ESP8266, подключение устройства займет всего несколько секунд, и тогда можно будет приступать к обновлению прошивки. Для установки нового программного обеспечения вам нужно сделать следующее.

Для начала скачивайте новую версию прошивки с официального сайта, а также скачивайте специальную утилиту для прошивки. Здесь отдельное внимание следует уделить тому, какая операционная система установлена на той машине, с которой работает ESP8266. Подключение устройства лучше всего проводить к системам старше Windows 7.

Для стандартных ОС Windows вполне оптимально будет использовать программу под названием XTCOM UTIL, которая особенно удобной в работе, если прошивка состоит только из одного файла. Лучшим мультиплатформенным вариантом стоит назвать утилиту esptool, которая, правда, требует python, а также необходимость указания параметров через командную строку. Помимо этого, в ESP8266 подключение основных функций позволяет удобно сделать программа Flash Download Tool, которая имеет достаточно большое количество настроек, а также удобную технологию установки прошивок из нескольких файлов.

Далее отключайте свою терминальную программу от последовательного порта, а также полностью отключайте CH_PD от питания, присоединяйте GPIO0 модуля к GND, и после этого CH_PD можно будет вернуть обратно. В конечном итоге просто запускайте программу для модульной прошивки и загружайте ее в ESP8266 реле.

В преимущественном большинстве случаев прошивка загружается в модуль со скоростью в районе 115200, но при этом специальный режим предусматривает автоматическое распределение скорости, вследствие чего прошивка может проводиться на скорости более 9600, обновляя доступные функции ESP8266. Arduino использовался для подключения или USB-TTL - здесь не играет особой роли, и здесь предельная скорость уже зависит от длины проводов, используемого конвертера и целого ряда других факторов.

После своего появления платы на базе Wifi чипа ESP8266, стали по настоящему народными. Огромные возможности и минимальная цена, которая даже на старте продаж и в розницу не превышала 5$ сделали свое дело. Вокруг чипа организовались сообщества в которых люди делятся информацией и создают программное обеспечение.

В чем же причина такой популярности, помимо низкой цены?

Все дело в том, что платы на ESP8266 это не просто модули для связи по WiFi. Чип по сути, является микроконтроллером со своими интерфейсами SPI, UART, а также портами GPIO, а это значит, что модуль можно использовать автономно без Arduino и других плат с микроконтроллерами.

Информация

Наши китайские товарищи уже производят около двенадцати разновидностей плат на базе ESP8266: с подключением внешней антенны, с керамической антенной, с PCB антенной, без антенны. Также на разных модулях выведено разное количество GPIO. Более подробно, можно прочитать на русскоязычном сайте .

В данном обзоре я буду использовать, одну из самых первых плат ESP-01 . Так же для полноценной работы с чипом потребуется конвертер USB/UART , рекомендую , обзор которого уже был на mysku.

Подключение

Распиновка разъёма ESP-01, представлена на рисунке:

Если в своих проектах вам не хватит двух выведенных GPIO, а заниматься «грязными хаками» нет желания, то я рекомендую сразу приобретать более новые платы, например ESP-07 или ESP-12 . Только имейте ввиду, что данные платы требуют самостоятельной разводки и в продаже для этого есть специальные мининаборы.

Фотографии данных плат


ESP-01 hacked by Dave Allan, как пример. Дополнительно вы получаете 4 GPIO: GPIO14, GPIO12, GPIO13 и GPIO15

Схема подключения:
- ESP-01 VCC к USB/UART VCC (+3.3В);
- ESP-01 GND к USB/UART GND;
- ESP-01 URXD к USB/UART TXD;
- ESP-01 UTXD к USB/UART RXD;
- ESP-01 CH_PD к USB/UART VCC (+3.3В);
- ESP-01 GPIO0 к USB/UART GND - только во время прошивки!..

Прошивка

Для ESP8266, существует SDK и оригинальная прошивка от Espressif Systems, но многих она не устраивает ввиду своей «сырости», поэтому выпускаются не оригинальные прошивки, такие как NodeMCU, Frankenstein и другие.

В данном обзоре будет использоваться не оригинальная прошивка NodeMCU. Список команда и примеры можно посмотреть на .

Обновляем оригинальную «заводскую» прошивку на NodeMCU:
- Загружаем утилиту для прошивания - ;
- Загружаем прошивку - ;
- Подключаем по ESP-01 к USB/UART по схеме которая представлена выше. Не забываем подключить GPIO0 к GND. Вставляем USB/UART в USB порт компьютера;
- Запускаем XTCOM_UTIL.exe, переходим в Tools -> Config Device, выбираем COM-порт к которому подключена плата, ставим скорость порта 57600, жмем Open, потом Connect, программа должна сказать «Connect with target OK!», закрываем окно настроек. Переходим в меню API TEST, выбираем (4) Flash Image Download, указываем путь к файлу «nodemcu_512k_latest.bin», адрес оставляем 0x00000, жмем DownLoad. Должна начаться загрузка прошивки, по окончании будет выдано сообщение;
- Отключаем питание платы, вывод GPIO0 отсоединяем от общего провода, включаем питание. Запускаем терминал Putty, CoolTerm или др. (ВНИМАНИЕ! Меняем скорость порта на 9600), проверяем готовность платы командой
> print(node.chipid())
10013490

Первый скрипт

Если при работе со скриптами у Вас будут проблемы, то рекомендуется подать питание 3.3V не от USB/UART, а от отдельного источника. Напряжение должно быть именно 3.3V, например через модуль стабилизированного питания на AMS1117 3.3V 800ma.

Для написания и загрузки скриптов в ESP8266, будет использоваться небольшая и удобная IDE - :

Наш первый скрипт, будет выключать и включать светодиод с периодичностью в 2 секунды:
- Отключаем питание, к GPIO2 подключаем резистор и светодиод. Включаем питание;
- Запускаем ESPlorer, выбираем нужный COM и скорость порта 9600, нажимаем Open;
- Вставляем код и нажимаем Save To ESP;

Pin = 4 --GPIO2 gpio.mode(pin, gpio.OUTPUT) for i=1, 10, 1 do gpio.write(pin, gpio.LOW) tmr.delay(2000000) gpio.write(pin, gpio.HIGH) tmr.delay(2000000) end
- Для повторного запуска нажимаем DoFile.

Подключаем датчик DHT11

Чтобы продемонстрировать, более продвинутую работу с прошивкой NodeMCU подключим к ESP-01 датчик DHT11:
- DHT11 VCC к USB/UART VCC
- DHT11 GND к USB/UART GND
- DHT11 Out к USB/UART GPIO2

Код от пользователя Pigs Fly с форума ESP8266.com

Works for DHT11 on ESP-07 (version w/16pins) and ESP-01 --Only 20141219 firmware tested. --Data stream acquisition timing is critical. There"s --barely enough speed to work with to make this happen. --Pre-allocate vars used in loop. bitStream = {} for j = 1, 40, 1 do bitStream[j]=0 end bitlength=0 pin = 4; gpio.mode(pin, gpio.OUTPUT) gpio.write(pin, gpio.LOW) tmr.delay(20000) --Use Markus Gritsch trick to speed up read/write on GPIO gpio_read=gpio.read gpio_write=gpio.write gpio.mode(pin, gpio.INPUT) --bus will always let up eventually, don"t bother with timeout while (gpio_read(pin)==0) do end c=0 while (gpio_read(pin)==1 and c<100) do c=c+1 end --bus will always let up eventually, don"t bother with timeout while (gpio_read(pin)==0) do end c=0 while (gpio_read(pin)==1 and c<100) do c=c+1 end --acquisition loop for j = 1, 40, 1 do while (gpio_read(pin)==1 and bitlength<10) do bitlength=bitlength+1 end bitStream[j]=bitlength bitlength=0 --bus will always let up eventually, don"t bother with timeout while (gpio_read(pin)==0) do end end --DHT data acquired, process. Humidity = 0 HumidityDec=0 Temperature = 0 TemperatureDec=0 Checksum = 0 ChecksumTest=0 for i = 1, 8, 1 do if (bitStream > 2) then Humidity = Humidity+2^(8-i) end end for i = 1, 8, 1 do if (bitStream > 2) then HumidityDec = HumidityDec+2^(8-i) end end for i = 1, 8, 1 do if (bitStream > 2) then Temperature = Temperature+2^(8-i) end end for i = 1, 8, 1 do if (bitStream > 2) then TemperatureDec = TemperatureDec+2^(8-i) end end for i = 1, 8, 1 do if (bitStream > 2) then Checksum = Checksum+2^(8-i) end end ChecksumTest=(Humidity+HumidityDec+Temperature+TemperatureDec) % 0xFF print ("Temperature: "..Temperature.."."..TemperatureDec) print ("Humidity: "..Humidity.."."..HumidityDec) print ("ChecksumReceived: "..Checksum) print ("ChecksumTest: "..ChecksumTest)


Прошу прощения за качество видео, снимал на телефон.

HTTP сервер

Пример подключения к Wifi точке доступа и ответ на запрос по HTTP.

Wifi.setmode(wifi.STATION) wifi.sta.config("SSID","password") print(wifi.sta.getip()) srv:listen(80,function(conn) conn:on("receive",function(conn,payload) print(payload) conn:send("

Hello, User.

") end) end)

Эпилог

Чип ESP8266 это безусловно прорыв, прежде всего в соотношении цена/качество. Конечно стоит упомянуть о существующих проблемах в оригинальных и не оригинальных прошивках, но работы ведутся и я надеюсь, что в будущем подобные чипы, будут встроены в каждый чайник. Планирую купить +156 Добавить в избранное Обзор понравился +103 +196

Настолько велика, что помимо прошивок для использования ESP8266 в качестве WiFi-модуля под управлением внешнего микроконтроллера, существует масса прошивок для использования его и как микроконтроллера с разными целевыми назначениями, в том числе и в сфере интернет вещей. В этом цикле статей мы будем изучать возможности ESP8266 с прошивкой NodeMCU и изучим скриптовый язык LUA .

Что такое ESP8266?

ESP8266 – это микроконтроллер с WiFi интерфейсом. Его можно использовать как WiFi модуль, и как микроконтроллер.

Плюсы ESP8266: WiFi интерфейс, 32-разрядное ядро с достаточной производительностью, низкая цена.
Минусы: По сравнению с другими 32-разрядными микроконтроллерами периферия не вызывает восхищения.

ESP8266 идеально подходит для домашних проектов, интернета вещей. ESP8266 программируется через последовательный порт UART, поэтому для его прошивки не требуется специального программатора. Особенность этого микроконтроллера в том, что он может выполнять программу, расположенную на внешней Flash памяти. Это позволяет производителю “наращивать” объем Флеша, что также является плюсом.

На базе ESP8266 выпускаются разные модули:

ESP-01
ESP-02
ESP-03
ESP-04
ESP-05
ESP-06
ESP-07
ESP-08
ESP-09
ESP-10
ESP-11
ESP-12S
ESP-12E
ESP-12F

Существует различные версии плат с уже запаянными модулями ESP8266, стабилизаторами напряжения, микросхемой для обеспечения работы последовательного порта UART через USB и разведенными на гребенку выводами, кнопками и тому подобное. Для работы с такими платами достаточно подключить их к USB порту компьютера. Никакого дополнительного оборудования не требуется. Это очень удобно. Одна из таких плат – NodeMCU. В примерах я буду использовать плату NodeMCU с модулем ESP-12F. Но, Вы вполне можете взять модуль, скажем ESP-01, подключить к нему UART-USB переходник и работать с ним аналогичным образом. У ESP-01 будет меньше памяти и меньше выводов, которые можно задействовать, но в остальном работа с ним аналогичная.


Что такое NodeMCU?

NodeMCU - открытый бесплатный проект на основе скриптового языка Lua. Прошивка достаточно мощная и позволяет очень быстро реализовывать различные типовые проекты. Например, сегодня, в качестве знакомства, мы сделаем WiFi розетку с управлением с мобильного телефона и с Web-интерфейсом. Прошивка умеет исполнять Lua-скрипты как из последовательного UART порта (аналогично AT-командам) так и из внутренней flash памяти (выполняя скрипты). Lua скрипты сохраняются во Flash во внутренней файловой системе. Файловая система плоская, упрощенная. Т.е. без подкаталогов. Тем не менее – это круто. Не стоит забывать, что ESP8266 – это всего лишь микроконтроллер. Из скриптов так же можно получить доступ к файлам, читать и сохранять различную информацию. NodeMCU модульная. Что с одной стороны позволяет наращивать функционал, а с другой собрать прошивку только из требуемых модулей, не расходуя понапрасну память.

NodeMCU работает с протоколами обмена данными – HTTP, MQTT, JSON, CoAP.
Поддерживаются различные датчики
акселерометры ADXL345,
магнитометры HMC5883L,
гироскопы L3G4200D,
датчики температуры и влажности AM2320, DHT11, DHT21, DHT22, DHT33, DHT44
датчики температуры, влажности, атмосферного давления BME280,
датчики температуры, атмосферного давления BMP085,
множество дисплеев работающих по шинам I2C, SPI . С возможностью работы с разными шрифтами.
TFT дисплеи ILI9163, ILI9341, PCF8833, SEPS225, SSD1331, SSD1351, ST7735,
умные светодиоды и LED контроллеры – WS2812, tm1829, WS2801, WS2812,
поддерживаются интерфейсы – 1-Wire, I2C, SPI, UART,

Также можно задействовать модуль шифрования, планировщик задач, часы реального времени, протокол синхронизации часов через интернет SNTP, таймеры, АЦП канал (один), проигрывать аудио файлы, формировать на выходах ШИМ-сигнал (до 6), использовать сокеты, есть поддержка FatFS, т.е можно подключать SD-карточки и так далее.

Что такое язык Lua?

Lua – это интерпретируемый язык, который, как и большинство современных интерпретируемых языков, может хранить скомпилированные версии скриптов. Это позволяет увеличить скорость работы. Lua позиционируется как мультипарадигмовый. Он не сложный, и если Вы уже программировали на любом языке, то Lua Вы изучите очень быстро. Если Вы только начинаете программировать, тогда Lua удивит Вас своей доступностью для начинающих.

Есть некоторые особенности при работе с Lua на NodeMCU. В основном это связано с конечным объемом памяти микроконтроллера ESP8266. Нужно придерживаться простых правил и выдерживать стиль работы с Lua. Об этих правилах расскажу чуть позже. Если же сохранять такой же стиль, как и при написании программ на С, то у Вас не получиться ощутить всей мощи Lua и прошивки NodeMCU. Когда Вы начинаете писать на Lua, это увлекает, и Вы начинаете воплощать в жизнь все более объемные задачи. Вы теряете ощущение того, что вы работаете с микроконтроллером и невольно нагружаете задачами, которые не по плечу микроконтроллеру. Нужно помнить, что у ESP8266 ограниченные ресурсы и не следует его грузить задачами, которые под силу выполнить микрокомпьютерам или полноценным компьютерам.

Документация по LUA на русском языке: http://www.lua.ru/doc/
Изучаем LUA за 15 минут: http://tylerneylon.com/a/learn-lua/

Где скачать NodeMCU?

Конечно, можно скачать исходные коды NodeMCU (https://github.com/nodemcu/nodemcu-firmware/releases/) и скомпилировать с нужными параметрами. Но мы не будет так делать. Существует сайт https://nodemcu-build.com , на котором можно собрать NodeMCU с необходимыми Вам модулями. Вы просто отмечаете те модули, которые Вам нужно, указываете свой e-mail и нажимаете внизу кнопку “Start ysour build “. Сначала на указанный e-mail приходит письмо о том что сборка началась. А затем извещение об окончании и ссылки для скачивания integer и float версий. Если в своем проекте Вы не будете использовать вычисления с плавающей запятой, тогда качайте “integer “. Не стоит жадничать и включать те модули, которые Вы не собираетесь использовать. В любой момент можно собрать новую прошивку, добавив недостающий модуль. Для примеров я собрал NodeMCU с такими модулями:

Как залить NodeMCU на ESP8266?

Теперь, когда у нас есть файл прошивки NodeMCU, его нужно залить в ESP8266. Прежде всего, при подключении платы NodeMCU к компьютеру должен появиться виртуальный Com порт. Как правило, последние версии Windows установки драйверов не требуют. Ubuntu сразу распознает подключенное устройство.

Прошивка NodeMCU под Windows

git clone https://github.com/themadinventor/esptool.git

Прошить командой:

Sudo python esptool.py --port /dev/ttyUSB0 write_flash 0x00000 The_Path_To_The_NodeMCU_Firmware.bin

/Dev/ttyUSB0 – порт на котором висит ESP8266.
The_Path_To_The_NodeMCU_Firmware.bin – путь к файлу прошивки.

Кстати, esptool можно использовать и под Windows. esptool написан на Pyton, для работы под Windows нужно установить Pyton .

esptool пригодиться нам для заливки бинарных файлов на файловую систему NodeMCU. Можно заливать любые файлы, в том числе скрипты. Скрипты можно писать хоть в Notepad, но я предпочитаю ESPlorer .

ESPlorer, init.lua – пишем первый скрипт

Для написания и заливки скриптов будем использовать программу ESPlorer. Это кроссплатформенная программа написана на Java и так же не требует установки. Работает одинаково как под Windows так и под Ubuntu.

Распаковываем архив.

Под Windows запускаем файл ESPlorer.bat

Sudo java-jar ESPlorer.jar

Указываем порт и скорость 9600 :

И нажимаем “Open “. Увидем следующще

У ESPlorer обнаружилась паршивая особенность. Он не всегда четко подключается к NodeMCU. Если попробовать послать любую команду (кнопкой Send ) в консоли пролетает мусор вместо нормального ответа. Иногда после нескольких повторов все налаживается. Если Вас это беспокоит, попробуйте изменить скорость подключения на 115200.


Приступим к созданию первого скрипта на языке Lua. Скрипт с именем init.lua стартует автоматически после запуска NodeMCU. Создадим файл init.lua .

напечатаем всего одну строчку:

Print("Yes it works!")

Сохраняем файл как init.lua . После сохранения файл выполниться и мы должны увидеть работу первого скрипта.

По умолчанию файл сохраняется и на диск компьютера и заливается на ESP8266.

Теперь о самой большой неприятности, которая есть у NodeMCU. При некоторых критических ошибках (это случается не так часто, но если случается, то запоминается на долго) NodeMCU может перезагружаться. И самое страшное, что может случиться – это циклическая перезагрузка. Это случается если допустить критическую ошибку в скрипте который стартует автоматически. NodeMCU стартует, выполняет “глючный” скрипт, нарывается на критическую ошибку и уходит в перезагрузку. И так до бесконечности.

Для того, чтобы обезопасить себя на этапе изучения NodeMCU, я использую описанный ниже прием. В стартовом скрипте init.lua запускаем таймер, который сработает только один раз и через указанное время (в данном случае через 5 секунд) выполнит процедуру запуска другого скрипта (в данном случае main.lua ). Больше ничего в скрипте init.lua не делаем. Все операции выполняются в скрипте main.lua . Таким образом, если мы допустим ошибку в скрипте main.lua , и NodeMCU уйдет в циклическую перезагрузку, после перезагрузки у нас будет 5 секунд для того чтобы удалить или исправить “глючный” скрипт.

Текст init.lua:

Print ("Waiting ...") tmr.register (0, 5000, tmr.ALARM_SINGLE, function (t) tmr.unregister (0); print ("Starting ..."); dofile ("main.lua") end) tmr.start (0)

Кроме того, такой подход позволяет легко включать в автозагрузку любо нужный скрипт, достаточно в файле init.lua вместо main.lua указать имя другого скрипта. Это очень удобно, когда вы на одной плате тестируете несколько проектов или несколько версий скрипта.

Подключаемся к Wifi или создаем свою Wifi точку

Для подключения к WiFi создаем main.lua и пишем:

WiFi Settup wifi.setmode(wifi.STATION) local cfg={} cfg.ssid="MyWiFi" cfg.pwd="MyWiFiPassword" wifi.sta.config(cfg) cfg = nil collectgarbage()

После успешного подключения модуль получить IP адрес. Узнать его можно с помощью команды:

Wifi.sta.getip()

Если мы хотим, чтобы ESP8266 создал свою собственную WiFi точку:

WiFi AP Settup wifi.setmode(wifi.STATIONAP) cfg={} cfg.ssid="ESPWIFI" cfg.pwd="1234567890" wifi.ap.config(cfg) cfg = nil collectgarbage()

Примечание: WiFi точка не поднимется, если пароль короче 8 символов. По умолчанию IP адрес точки всегда 192.168.4.1

Его можно узнать командой:

Wifi.ap.getip()

Что такое collectgarbage() ? Функция collectgarbage – это сборщик мусора. Ее следует вызывать в конце каждого скрипта. Обратите внимание, переменная cfg объявлена как local . Она будет доступна только в текущем скрипте. Если local убрать, то переменная cfg была бы глобальной и доступной в других скриптах.

GPIO. Мигаем светодиодом

Для управления реле (мы ведь собрались делать WiFi розетку) потребуется изучить работу с выводами GPIO . Пока попробуем использовать GPIO вывод в качестве выхода и устанавливать высокий и низкий уровень сигнала. Для наглядности подключим светодиод как показано на схеме.

My_pin_nummber = 1 -- Устанавливаем режим работы как выход gpio.mode (my_pin_nummber, gpio.OUTPUT) -- Задать высокий уровень gpio.write (my_pin_nummber, gpio.HIGH) -- Задать низкий уровень gpio.write (my_pin_nummber, gpio.LOW) -- Мигаем светодиодом 10 раз gpio.serout (1, gpio.HIGH, {+990000,990000}, 10, 1)

Нумерация выводов:

IO index ESP8266 pin
0 GPIO16
1 GPIO5
2 GPIO4
3 GPIO0
4 GPIO2
5 GPIO14
6 GPIO12
7 GPIO13
8 GPIO15
9 GPIO3
10 GPIO1
11 GPIO9
12 GPIO10

D0(GPIO16) can only be used as gpio read/write. No support for open-drain/interrupt/pwm/i2c/ow

Плата NodeMCU

Примечание: Существует несколько версий плат Nodemcu. Распиновка Вашей платы может отличаться.

Websocket

Теперь сделаем сервер, который будет работать на указанном порту (пусть будет 333). Затем мы с помощью терминальной программы подключимся к нашему серверу, указав его IP и порт. И потом будем обмениваться данными.

Скрипт main.lua:

WiFi AP Settup wifi.setmode(wifi.STATIONAP) cfg={} cfg.ssid="ESPTEST" cfg.pwd="1234567890" wifi.ap.config(cfg) --Create Server sv=net.createServer(net.TCP) function receiver(sck, data) -- Print received data print(data) -- Send reply sck:send("Recived: "..data) end if sv then sv:listen(333, function(conn) conn:on("receive", receiver) conn:send("Hello!") end) end print("Started.")

Теперь наш скрипт поднимает Wi-Fi точку, создает сервер, который на порту 333 ожидает подключения. В момент подключения сервер отправит клиенту строку “Hello! “, а приняв от клиента данные, вернет ему строку “Recived: ” и дальше все, что он принял.

Теперь мы можем подключиться мобильным телефоном к Wi-Fi точке ESP8266. В принципе, создавать точку не обязательно. Вы можете переписать скрипт и сделать так, чтобы ESP8266 подключался к Вашей WiFi сети. Тогда Вам нужно узнать его IP и далее использовать его вместо 192.168.4.1, который далее используется в примерах.

Но нам еще нужна терминальная программа для подключения на IP адрес ESP8266 (192.168.4.1) и указанный порт (333). На обычном компьютере можно установить PuTTY . Для мобильных телефонов под Android я использую JuiceSSH .

Передача данных с мобильного телефона с помощью JuiceSSH

Устанавливаем и запускаем RoboRemoFree

Создаем подключение к серверу. Желательно чтобы мобильный телефон/планшет был подключен к той-же WiFi сети, где находиться сервер. В данном случае наш ESP8266. Заходим в “Menu”, выбираем пункт “connect”

Выбираем тип подключения “Internet (TCP)”

Указываем IP и порт

Выбираем интерфейс. Программа позволяет создавать несколько интерфейсов с разными органами управления.

Затем переходим в режим редактирования интерфейса

Нажимаем на свободном пространстве и выбираем, что мы хотим установить. Мы будем использовать кнопки. Выбираем “button”

После чего на интерфейс будет установлена кнопка. Ее можно перемещать и изменять ее размеры.

Чтобы изменить название на кнопке, нужно нажать не ней и выбрать пункт “Set text”

Затем укажем еще один параметр – “set press action”. Зададим “1”. При нажатии кнопки будет отправлена указанная строка по созданному нами подключению. Т.е. Наш ESP8266 получит символ “1” и включит светодиод.

Аналогично создадим кнопку “Off” и установим set press action “0”.

Наш интерфейс готов. Выходим из режима редактирования, выполнив пункт меню “don’t edit ui”.

Если подключение к серверу (ESP8266) было успешным, можно пользоваться. По нажатию кнопки “On” светодиод должен загореться, по нажатию кнопки “Off” светодиод должен погаснуть.

Web интерфейс

Есть и другой путь – можно сделать Web интерфейс и управлять светодиодом еще и через браузер.

Тот же скрипт + Web интерфейс:

WiFi AP Settup wifi.setmode(wifi.STATIONAP) cfg={} cfg.ssid="ESPTEST" cfg.pwd="1234567890" wifi.ap.config(cfg) --Set Pin mode my_pin_nummber = 1 gpio.mode(my_pin_nummber, gpio.OUTPUT) --Create Server sv=net.createServer(net.TCP) function receiver(sck, data) if string.sub (data, 0, 1) == "1" then gpio.write(my_pin_nummber, gpio.HIGH) else if string.sub (data, 0, 1) == "0" then gpio.write(my_pin_nummber, gpio.LOW) end end print(data) end if sv then sv:listen(333, function(conn) conn:on("receive", receiver) conn:send("Hello!") end) end --Create HTTP Server http=net.createServer(net.TCP) function receive_http(sck, data) local request = string.match(data,"([^\r,\n]*)[\r,\n]",1) if request == "GET /on HTTP/1.1" then gpio.write(my_pin_nummber, gpio.HIGH) end if request == "GET /off HTTP/1.1" then gpio.write(my_pin_nummber, gpio.LOW) end sck:on("sent", function(sck) sck:close() end) local response = "HTTP/1.0 200 OK\r\nServer: NodeMCU on ESP8266\r\nContent-Type: text/html\r\n\r\n".. "NodeMCU on ESP8266".. "

NodeMCU on ESP8266

".. "
".. "On Off".. "" sck:send(response) end if http then http:listen(80, function(conn) conn:on("receive", receive_http) end) end print("Started.")

Небольшое пояснение как работает web-сервер вообще, и наш скрипт в частности. Стандартный порт для web-сервера – 80. Т.е. когда Вы в браузере набираете http://192.168.4.1/ , то браузер подключается к серверу (192.168.4.1) на порт 80 и отправляет запрос. Запрос выглядит примерно так:

GET / HTTP / 1.1 Host: 192.168.4.1 User-Agent: Mozilla / 5.0 (Windows NT 5.1; rv: 2.0.1) Gecko / 20100101 Firefox Accept: text / html, application / xhtml + xml, application / xml; q = 0.9, * / *; q = 0.8 Accept-Language: ru-RU, ru; q = 0.8, en-US; q = 0.5, en; q = 0.3 Accept-Encoding: gzip, deflate Connection: keep-alive Upgrade-Insecure-Requests: 1

Для нас представляет интерес первая строка запроса: “GET / HTTP/1.1 “. В ней указан URL. Если в браузере набрать http://192.168.4.1/on , тогда в первой строке запроса будет “GET /on HTTP/1.1 “. А если в браузере набрать http://192.168.4.1/off тогда будет “GET /off HTTP/1.1 “. Именно эту строку и анализирует скрипт и в зависимости от полученного URL включает или отключает светодиод.

Далее скрипт отправляет html страничку. Но после отправки нужно разорвать подключение. Поскольку отправка занимает некоторое время, а ждать окончания отправки технически глупо, на событие “sent ” (отправлено) подключим функцию со строкой sck:close() . Это делается в строке: sck:on(“sent”, function(sck) sck:close() end). П осле чего выполняется отправка html страницы sck:send(response). С крипт продолжает работу. Когда ответ будет полностью отправлен, сработает sck:close() .

Страницы большого размера таким образом отправить не получится. Весомое содержимое нужно отправлять кусками. Подробнее об этом будет рассказано в другой статье.

Подключаем реле с нагрузкой

Внимание! Напряжение более 40 Вольт опасно для жизни человека! Будьте внимательны и аккуратны, собирая схему и подключая бытовые приборы. Не прикасайтесь к токоведущим частям.

А теперь вместо светодиода подключим модуль реле, а в качестве нагрузки – скажем лампу, обогреватель, компрессор для аквариума, вентилятор и т.п.

При подключении реле могут быть нюансы. Если блок реле с оптической развязкой (с оптопарой), то, скорее всего, Вам ничего переделывать не придется. Если блок реле без оптической развязки, как у меня, тогда придется переделать работу с GPIO, поскольку во первых реле включается низким уровнем, а не высоким, а во вторых высокий уровень ESP8266 – это 3.3В, для 5-ти вольтового блока реле этого не достаточно, поэтому мне пришлось настроить выход как OPENDRAIN, после чего все заработало как надо.

Финальная версия скрипта выглядит так:

WiFi AP Settup wifi.setmode(wifi.STATIONAP) cfg={} cfg.ssid="ESPTEST" cfg.pwd="1234567890" wifi.ap.config(cfg) --Set Pin mode my_pin_nummber = 1 --gpio.mode(my_pin_nummber, gpio.OUTPUT) gpio.mode(my_pin_nummber, gpio.OPENDRAIN) --Create Server sv=net.createServer(net.TCP) function receiver(sck, data) if string.sub (data, 0, 1) == "1" then --gpio.write(my_pin_nummber, gpio.HIGH) gpio.write(my_pin_nummber, gpio.LOW) else if string.sub (data, 0, 1) == "0" then --gpio.write(my_pin_nummber, gpio.LOW) gpio.write(my_pin_nummber, gpio.HIGH) end end print(data) end if sv then sv:listen(333, function(conn) conn:on("receive", receiver) conn:send("Hello!") end) end --Create HTTP Server http=net.createServer(net.TCP) function receive_http(sck, data) print(data) local request = string.match(data,"([^\r,\n]*)[\r,\n]",1) if request == "GET /on HTTP/1.1" then --gpio.write(my_pin_nummber, gpio.HIGH) gpio.write(my_pin_nummber, gpio.LOW) end if request == "GET /off HTTP/1.1" then --gpio.write(my_pin_nummber, gpio.LOW) gpio.write(my_pin_nummber, gpio.HIGH) end sck:on("sent", function(sck) sck:close() collectgarbage() end) local response = "HTTP/1.0 200 OK\r\nServer: NodeMCU on ESP8266\r\nContent-Type: text/html\r\n\r\n".. "NodeMCU on ESP8266".. "

NodeMCU on ESP8266

".. "
".. "On Off".. "" sck:send(response) end if http then http:listen(80, function(conn) conn:on("receive", receive_http) end) end print("Started.")

Теперь мы можем включать и выключать “розетку” с мобильного телефона с помощью программы RoboRemoFree или с помощью браузера. Разумеется, с обычного компьютера через браузер тоже можно управлять.



Все это хорошо, но что дальше? Если у нас будет 5, 10, 20 подобных устройств? Как их объединить, чтобы не надо было подключаться к каждому устройству отдельно. Для этого существует протокол MQTT, но это будет отдельная тема. А пока мы изучим возможности ESP8266 и NodeMCU.

Некоторые правила работы с языком Lua на NodeMCU

1. Не пишите длинные скрипты. Размер памяти ESP8266 не бесконечен. Разбивайте программу на функциональные модули и делайте их в виде отдельных скриптов, запуская их с помощью dofile() . Например, код подключения к Wifi:

WiFi Settup wifi.setmode (wifi.STATION) local cfg = {} cfg.ssid = "MyWiFi" cfg.pwd = "MyWiFiPassword" wifi.sta.config (cfg) cfg = nil collectgarbage ()

можно вынести в отдельный скрипт “wifi.lua ” и выполнить его из основного скрипта командой dofile(“wifi.lua”) .

2. Переменные, которые используются только в текущем скрипте объявляйте как local . В конце скрипта, когда переменная уже не нужна, присваивайте ей значение nil и явно вызывайте сборщик мусора collectgarbage()