Основные функции автоматизированных информационных систем. Типы аис

Реферат

ПО ТЕМЕ: Автоматизированная информационная система. Принцип работы на примере конкретной системы.

Выполнил студент группы ЭУ-091-1

Буймов С. В.

Проверил ст. преп. Шмидт Т.С.

Новокузнецк 2012


Введение. 3

1. Автоматизированная информационная система. 4

2. Принцип работы автоматизированной информационной системы на примере 1С:Предприятие. 18

Заключение. 26

Список использованных источников. 27


Введение

Бурное развитие компьютерной техники привело к тому, что все большее распространение стали получать информационные системы, базирующиеся на использовании информационно-вычислительной техники и средств коммуникаций, которые являются основными техническими средствами хранения, обработки и передачи информации. Такие информационные системы называют автоматизированными. Они основаны на использовании специальных средств и методов преобразования информации, т.е. автоматизированных информационных технологий.

Автоматизированная информационная система (АИС) представляет собой совокупность информации, экономико-математических методов и моделей, технических, программных, технологических средств и штата специалистов, предназначенную для обработки информации и принятия управленческих решений . Создание АИС способствует повышению эффективности производства экономического объекта и обеспечивает качество управления. Наибольшая эффективность АИС достигается при оптимизации планов работы предприятий, фирм и отраслей, быстрой выработке оперативных решений, четком маневрировании материальными и финансовыми ресурсами и т.д. Поэтому процесс управления в условиях функционирования автоматизированных информационных систем основывается на экономико-организационных моделях, более или менее адекватно отражающих характерные структурно-динамические свойства объекта.

Безусловно, полного повторения объекта в модели быть не может, однако несущественными для анализа и принятия управленческих решений деталями можно пренебречь. Модели имеют собственную классификацию, подразделяясь на вероятностные и детерминированные, функциональные и структурные. Эти особенности модели порождают разнообразие типов информационных систем.


Автоматизированная информационная система

Автоматизированные информационные системы представляют собой совокупность различных средств, предназначенных для сбора, подготовки, хранения, обработки и предоставления информации, удовлетворяющей информационные потребности пользователей. АИС объединяет следующие составляющие:

1) языковые средства и правила, используемые для отбора, представления и хранения информации, для отображения картины реального мира в модель данных, для представления пользователю необходимой информации;


2) информационный фонд системы;

3) способы и методы организации процессов обработки информации;

4) комплекс программных средств, реализующих алгоритмы преобразования информации;

5) комплекс технических средств, функционирующих в системе;

6) персонал, обслуживающий систему .

Основными целями автоматизации деятельности предприятия являются:

1. Сбор, обработка, хранение и представление данных о деятельности организации и внешней среде в виде, удобном для финансового и любого другого анализа и использования при принятии управленческих решений.

2. Автоматизация выполнения бизнес операций (технологических операций), составляющих целевую деятельность предприятия.

3. Автоматизация процессов, обеспечивающих выполнение основной деятельности.

Система управления процессом обычно выполняет много различных функций, которые можно разделить на три большие группы (рис. 1):

сбор и оценка данных технического процесса - мониторинг;

управление некоторыми параметрами технического процесса;

связь входных и выходных данных - обратная связь, автоматическое управление.

Мониторинг процесса или сбор информации о процессе - это основная функция, присущая всем системам управления. Мониторинг - это сбор значений переменных процесса, их хранение и отображение в подходящей для человека-оператора форме. Мониторинг является фундаментальным свойством всех систем обработки данных.

Мониторинг может быть ограничен лишь выводом первичных или обработанных данных на экран монитора или на бумагу, а может включать более сложные функции анализа и отображения. Например, переменные, которые нельзя непосредственно измерить, должны рассчитываться или оцениваться на основе имеющихся измерений. Другой классической чертой мониторинга является проверка, что измеренные или рассчитанные значения находятся в допустимых пределах.

Когда функции системы управления процессом ограничены сбором и отображением данных, все решения об управляющих действиях принимаются оператором. Этот вид управления, называемый супервизорным или дистанционным управлением (supervisory control), был очень распространен в первых системах компьютерного управления процессами. Он до сих пор применяется, особенно для очень сложных и относительно медленных процессов, где важно вмешательство человека. Примером являются биологические процессы, где определенную часть наблюдений нельзя выполнить с помощью автоматики.

При поступлении новых данных их значение оценивается относительно допустимых границ. В более развитой системе контроля несколько результатов могут комбинироваться на основе более или менее сложных правил для проверки, находится ли процесс в нормальном состоянии или вышел за какие-либо допустимые пределы. В еще более современных решениях, в особенности построенных на экспертных системах или базах знаний, комбинированная оперативная информация от датчиков объединяется с оценками, сделанными операторами.

Управление - это функция, обратная мониторингу. В прямом смысле управление означает, что команды ЭВМ поступают к исполнительным механизмам для воздействия на физический процесс. Во многих случаях на параметры процесса можно воздействовать только опосредованно через другие параметры управления.

Система, которая действует автономно и без прямого вмешательства оператора, называется автоматической. Система автоматического управления может состоять из простых контуров управления (одного для каждой пары входных и выходных переменных процесса) или из более сложных регуляторов со многими входами и выходами.

Существуют два основных подхода к реализации обратной связи в вычислительных системах. При традиционном прямом цифровом управлении (ПЦУ, Direct Digital Control - DDC) центральная ЭВМ рассчитывает управляющие сигналы для исполнительных устройств. Все данные наблюдения передаются в полном объеме от датчиков к центру управления, а управляющие сигналы - обратно к исполнительным устройствам.

В системах распределенного прямого цифрового управления {Distributed Direct Digital Control - DDDC) вычислительная система имеет распределенную архитектуру, а цифровые регуляторы реализованы на основе локальных процессоров, т.е. расположены вблизи технического процесса. ЭВМ верхних уровней управления рассчитывают опорные значения, а локальные процессоры ответственны главным образом за непосредственное управление техническим процессом, т.е. выработку управляющих сигналов для исполнительных механизмов на основе данных локального мониторинга. Эти локальные ЭВМ включают в себя цифровые контуры управления.

С точки зрения структурирования уровней управления и обработки различие между прямым цифровым управлением и распределенным прямым цифровым управлением заключается в том, что в первом случае, даже при наличии нескольких ЭВМ, они занимаются только передачей информации и не принимают решений (кроме центрального) об управляющих действиях. Напротив, в распределенной структуре ЭВМ на уровнях процесса, участка и общего управления могут действовать более или менее автономно и не зависят от центральной ЭВМ. Как уже указывалось, это различие влияет и на надежность сложной системы. При отказе центральной ЭВМ управляющая система типа ПЦУ останавливается, а распределенная система, даже при отказе одного или нескольких элементов, хотя и утратит часть функций, но будет продолжать работу.

Более простая и архаичная форма автоматизированного управления - это так называемое управление опорными значениями (setpoint control). ЭВМ рассчитывает опорные значения, которые затем передаются обычным аналоговым регуляторам. В этом случае ЭВМ применяется только для вычислений, а не для измерений или генерации управляющих воздействий.

Системы дистанционного мониторинга и управления обычно определяют общим названием SCADA (от Supervisory Control And Data Acquisition - Дистанционное управление и сбор данных). SCADA - это очень широкое понятие и может относиться как к достаточно простому устройству, реализованному на одном компьютере, так и к сложной, распределенной системе, включающей центр управления, периферийные устройства и систему связи.

Применение базы данных процесса для мониторинга и управления

Система управления среднего или большого размера имеет несколько сотен или тысяч точек взаимодействия с техническим процессом. Практически невозможно обработать всю соответствующую информацию с помощью программных модулей, написанных специально для каждой из этих точек. Вместо этого необходим систематический подход к обработке всех входных данных. Простое структурирование параметров процесса можно выполнить на основе записей, а для более сложных случаев необходимо применение аппарата полноценной базы данных с соответствующими методами доступа.

Программы для доступа к информации, хранящейся в базе данных, включают в числе прочего следующие подсистемы:

    ввод данных и интерфейс с базой данных;

    вывод данных, т.е. интерфейс между базой данных и выходом управляющей ЭВМ или исполнительных механизмов;

    отображение данных;

    интерфейс для ввода команд.

Развитые базы данных могут включать до двадцати параметров-описателей для каждого объекта ввода/вывода. Некоторые из этих описателей обязательны и встречаются в каждой реализации базы данных; остальные применяются только при определенных обстоятельствах.

База данных процесса придает однородность и структуру хранимым данным. Датчики и исполнительные механизмы в системе управления процессом могут быть самых разнообразных типов. Температуры могут измеряться резистором с положительным температурным коэффициентом, термопарой и цифровым устройством. Соответственно, информация от датчиков может поступать к центральному процессору как в исходном формате, так и в виде пакетов данных, возможно, уже преобразованных к ASCII кодам.

Доступ к базе данных процесса, запросы и протоколы

Доступ к информации, содержащейся в базе данных, выполняется с помощью трех основных операций, которые могут комбинироваться, - выбора, проекции и сортировки. Строго говоря, эти операции формально определены лишь для реляционных баз данных, тем не менее, их можно использовать и для баз данных другой структуры.

Выбор (selection) определяет операцию для извлечения из базы данных только записей, удовлетворяющих заданным критериям.

Проекция (projection) -. это список интересующих полей записи базы данных.

Сортировка (sorting) означает упорядочение выбранных записей в соответствии с каким-нибудь критерием.

Сочетание трех основных операций порождает большое число вариантов обработки и анализа данных. Обычно база данных содержит слишком много информации, воспринимать и анализировать которую целиком невозможно, однако при наличии соответствующих инструментов можно извлечь любую необходимую проблемно-ориентированную информацию. Операции доступа к базе данных и есть эти инструменты.

Операция по извлечению информации из базы данных называется запросом (query).

Для эффективного использования программ доступа к базе данных необходимо заранее выбрать подмножество интересующих данных. Обычно для каждой конкретной ситуации интерес может представлять лишь очень ограниченное число выборок из базы данных, поэтому заранее можно определить небольшой набор стандартных запросов. Такие запросы называются протоколами. Протоколы - это обычно запросы, в которых предопределены операции проекции и сортировки (какую информацию вывести и в каком порядке), а перед их запуском требуется указать только конкретные параметры.

Протоколы аварийной сигнализации.

Важнейшей функцией системы управления является быстрое выявление недопустимых режимов и оповещение об этом оператора. Каждое изменение состояния, классифицированное как аварийное, должно быть зафиксировано в специальном файле - журнале аварий - с указанием времени события.

Специальный запрос - аварийный протокол - используется для поиска и вывода всех объектов базы данных, которые находятся в данный момент времени в аварийном состоянии. Этот протокол чрезвычайно важен для обслуживания и ремонта.

Протоколы обслуживания.

Еще одной важной составляющей работы производственного предприятия является техническое обслуживание приборов и оборудования. Примеры обслуживания - замена изношенных инструментов, калибровка датчиков, контроль уровней горючего и смазки. Тип до разборки целых агрегатов для проверки состояния и очистки их узлов обслуживания называется предупредительным ремонтом (preventive maintenance) и выполняется для поддержания оборудования в оптимальном рабочем состоянии.

Анализ данных и тренды.

Важной задачей в промышленном производстве является учет производительности и статистических показателей. Информация, содержащаяся в базе данных, может служить первичным источником для процедур статистической обработки. Основной статистической операцией является суммирование показателей по времени, т.е. вычисление нарастающих итоговых величин для заданных интервалов времени - день, неделя, месяц. Суммарные показатели можно выводить в виде статистических таблиц, содержащих и другие величины, рассчитанные на их основе, - показатели эффективности и качества.

Операции управления, выполняемые с использованием базы данных

В некоторых системах управления в базе данных хранятся указания на автоматические действия, которые выполняются в определенных ситуациях. Специальная таблица базы данных указывает, при каком значении некоторого параметра вызывается исполнительная команда. Эта таблица работает подобно ПЛК, хотя данные, которые она использует, находятся на более высоком уровне абстракции и могут включать производные величины.

Введение

Понятие автоматизированной информационной системы и ее структурные компоненты

Классификация автоматизированных информационных систем

Основные функции автоматизированных информационных систем

Заключение

Список литературы

Введение

Автоматизация и создание информационных систем являются на данный момент одной из самых ресурсоемких областей деятельности техногенного общества. Одной из причин активного развития данной области является то, что автоматизация служит основой коренного изменения процессов управления, играющих важную роль в деятельности человека и общества. Возникают системы управления, действие которых направлено на поддержание или улучшение работы объекта с помощью устройства управления (комплекс средств сбора, обработки, передачи информации и формирования управляющих сигналов или команд).

Информационная система - это система, обеспечивающая уполномоченный персонал данными или информацией, имеющими отношение к организации. Информационная система управления, в общем случае, состоит из четырех подсистем: системы обработки транзакций, системы управленческих отчетов, офисной информационной системы и системы поддержки принятия решений, включая информационную систему руководителя, экспертную систему и искусственный интеллект.

Автоматизированная информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Таким образом, автоматизированная информационная система (АИС) представляет собой совокупность информации, экономико-математических методов и моделей, технических, программных, технологических средств и специалистов, предназначенная для обработки информации и принятия управленческих решений.

Целью данной работы является рассмотрение сущности автоматизированных информационных систем.

1. Понятие автоматизированной информационной системы и ее структурные компоненты

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов. Системы значительно отличаются между собой как по составу, так и по главным целям.

В информатике понятие «система» широко распространено и имеет множество смысловых значений. Чаще всего оно используется применительно к набору технических средств и программ. Системой может называться аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

Добавление к понятию «система» слова «информационная» отражает цель ее создания и функционирования. Информационные системы обеспечивают сбор, хранение, обработку, поиск, выдачу информации, необходимой в процессе принятия решений задач из любой области. Они помогают анализировать проблемы и создавать новые продукты.

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить суперЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление, поэтому

Автоматизированная информационная система (АИС) - это человеко-машинная система, обеспечивающая автоматизированную подготовку, поиск и обработку информации в рамках интегрированных сетевых, компьютерных и коммуникационных технологий для оптимизации экономической и другой деятельности в различных сферах управления.

На этой основе создаются различные автоматические и автоматизированные системы управления технологическими процессами. Типичным примером таких систем может служить в связи - автоматическая коммутационная станция. В этой системе управление осуществляется с помощью технических устройств типа процессоров или других более простых приборов. Человек-оператор не входит в контур управления, замыкающий связи объекта и органа управления, а лишь следит за ходом технологического процесса и по мере необходимости (например, в случае сбоя) вмешивается. Иначе обстоит дело с автоматизированной системой управления производственным процессом. В АС производственными процессами и объект и орган управления представляет собой единую человеко-машинную систему, человек обязательно входит в контур управления. По определению АС - это человеко-машинная система, предназначенная для сбора и обработки информации, необходимой для управления производственным процессом, то есть управления коллективами людей. Иначе говоря, успех функционирования таких систем во многом зависит от свойств и особенностей жизнедеятельности человеческого фактора. Без человека система АС производством самостоятельно не может работать, так как человек формирует задачи, разрабатывает все виды обеспечивающих подсистем, выбирает из выданных ЭВМ вариантов решений наиболее рациональный. И, разумеется, человек, что очень важно, в конечном счете юридически отвечает за результаты реализации принятых им решений. Как видим, роль человека огромна и не заменима. Человек организует программу подготовительных мероприятий перед созданием АС, следовательно, требуется помимо всего прочего специальное организационное и правовое обеспечение.

Структуру АИС составляет совокупность отдельных ее частей, называемых подсистемами. Подсистема - это часть системы, выделенная по какому-либо признаку.

АС состоит из двух подсистем: функциональной и обеспечивающей. Функциональная часть АС включает в себя ряд подсистем, охватывающих решение конкретных задач планирования, контроля, учета, анализа и регулирования деятельности управляемых объектов. В ходе аналитического обследования могут быть выделены различные подсистемы, набор которых зависит от вида предприятия, его специфики, уровня управления и других факторов. Для нормальной деятельности функциональной части АС в ее состав входят подсистемы обеспечивающей части АС (так называемые обеспечивающие подсистемы).

Классификация автоматизированных информационных систем

Системы, применительно к АС, могут быть проклассифицированы по ряду признаков. Например:

по уровням иерархии (суперсистема, система, подсистема, элемент системы);

по степени замкнутости (замкнутые, открытые, условно-замкнутые);

по характеру протекаемых процессов в динамических системах (детерминированные, стохастические и вероятностные);

по типу связей и элементов (простые, сложные).

Системы делятся на примитивные элементарные (для них строятся автоматические системы управления) и большие сложные. Так как большие и сложные системы обладают свойством необозримости, то их можно рассматривать с нескольких точек зрения. Следовательно, классификационных признаков тоже много.

Классифицировать АС можно:

По уровню:

АСУ Отрасли;

АСУ Производства;

АСУ Цеха;

АСУ Участка;

АСУ ТП (технологического процесса).

При этом в зависимости от уровня обслуживания производственных процессов на предприятии сама КИС или его составная часть (подсистемы) могут быть отнесены к различным классам:

Класс A: системы (подсистемы) управления технологическими объектами и/или процессами.

Класс B: системы (подсистемы) подготовки и учета производственной деятельности предприятия.

Класс C: системы (подсистемы) планирования и анализа производственной деятельности предприятия.

Системы (подсистемы) класса A - системы (подсистемы) контроля и управления технологическими объектами и/или процессами. Эти системы, как правило, характеризуются следующими свойствами:

достаточно высоким уровнем автоматизации выполняемых функций;

наличием явно выраженной функции контроля за текущим состоянием объекта управления;

наличием контура обратной связи;

объектами контроля и управления такой системы выступают: технологическое оборудования; датчики; исполнительные устройства и механизмы.

малым временным интервалом обработки данных (т.е. интервалом времени между получением данных о текущем состоянии объекта управления и выдачей управляющего воздействия на него);

слабой (несущественной) временной зависимостью (корреляцией) между динамически изменяющимися состояниями объектов управления и системы (подсистемы) управления.

В качестве классических примеров систем класса A можно считать:

SCADA - Supervisory Control And Data Acquisition (диспетчерский контроль и накопление данных);

DCS - Distributed Control Systems (распределенные системы управления);

Batch Control - системы последовательного управления;

АСУ ТП - Автоматизированные Системы Управления Технологическими Процессами.

Системы класса B - это системы (подсистемы) подготовки и учета производственной деятельности предприятия. Системы класса B предназначены для выполнения класса задач, требующих непосредственного участия человека для принятия оперативных (тактических) решений, оказывающих влияние на ограниченный круг видов деятельности или небольшой период работы предприятия.

В некотором смысле к таким системам принято относить те, которые находятся на уровне технологического процесса, но с технологией напрямую не связаны. В перечень основных функций систем (подсистем) данного класса можно включить:

выполнение учетных задач, возникающих в деятельности предприятия;

сбор, предварительную подготовку данных, поступающих в КИС из систем класса A, и их передачу в системы класса C;

подготовку данных и заданий для автоматического исполнения задач системами класса A.

С учетом прикладных функций этот список можно продолжить следующими пунктами:

управление производственными и человеческими ресурсами в рамках принятого технологического процесса;

планирование и контроль последовательности операций единого технологического процесса;

управление качеством продукции;

управление хранением исходных материалов и произведенной продукции по технологическим подразделениям;

управление техническим обслуживанием и ремонтом.

Эти системы, как правило, имеют следующие характерные признаки и свойства:

небольшой длительностью обработки данных, колеблющейся от нескольких минут до несколько часов или суток;

система оказывает влияние на небольшой период работы предприятия (в пределах от месяца до полугода);

наличием сопряжения с системами класса A и/или C.

Классическими примерами систем класса B можно считать:

MES - Manufacturing Execution Systems (системы управления производством);

MRP - Material Requirements Planning (системы планирования потребностей в материалах);

MRP II - Manufacturing Resource Planning (системы планирования ресурсов производства);

CRP - C Resource Planning (система планирования производственных мощностей);

CAD - Computing Aided Design (автоматизированные системы проектирования - САПР);

CAM - Computing Aided Manufacturing (автоматизированные системы поддержки производства);

CAE - Computing Aided Engineering (автоматизированные системы инженерного проектирования - САПР);

PDM - Product Data Management (автоматизированные системы управления данными);

SRM - Customer Relationship Management (системы управления взаимоотношениями с клиентами);

всевозможные учетные системы и т.п.

Одна из причин возникновения подобных систем - необходимость выделить отдельные задачи управления на уровне технологического подразделения предприятия.

Системы класса C - это системы (подсистемы) планирования и анализа производственной деятельности предприятия. Системы класса C предназначены для выполнения класса задач, требующих непосредственного участия человека для принятия стратегических решений, оказывающих влияние на деятельность предприятия в целом. В круг задач решаемых системами (подсистемами) данного класса можно включить:

анализ деятельности предприятия на основе данных и информации, поступающей из систем класса B;

планирование деятельности предприятия;

регулирование глобальных параметров работы предприятия;

планирование и распределение ресурсов предприятия;

подготовку производственных заданий и контроль их исполнения.

наличие взаимодействия с управляющим субъектом (персоналом), при выполнении стоящих перед ними задач;

интерактивность обработки информации;

повышенной длительностью обработки данных, колеблющейся от нескольких минут до несколько часов или суток;

длительным периодом принятия управляющего решения;

наличием существенных временной и параметрической зависимостей (корреляций) между обрабатываемыми данными;

система оказывает влияние на деятельность предприятия в целом;

система оказывает влияние на значительный период работы предприятия (от полугода до нескольких лет);

наличием непосредственного сопряжения с системами класса B.

Классическими названиями системы класса B можно считать:

ERP - Enterprise Resource Planning (Планирование Ресурсов Предприятия);

IRP - Intelligent Resource Planning (системами интеллектуального планирования);

По типу принимаемого решения:

Информационно-справочные системы, которые просто сообщают информацию («экспресс», «сирена», «09»);

Информационно-советующая (справочная) система, представляет варианты и оценки по различным критериям этих вариантов;

Информационно-управляющая система, выходной результат не совет, а управляющее воздействие на объект.

По типу производства:

АСУ с дискретно-непрерывным производством;

АСУс дискретным производством;

АСУс непрерывным производством.

По назначению:

Военные АСУ;

Экономические системы (предприятия, конторы, управляющие властные структуры);

Информационно-поисковые системы.

По областям человеческой деятельности:

Медицинские системы;

Экологические системы;

Системы телефонной связи.

По типу применяемых вычислительных машин:

Цифровые вычислительные машины (ЦВМ);

3. Основные функции автоматизированных информационных систем

Система управления процессом обычно выполняет много различных функций, которые можно разделить на три большие группы (рис. 1):

сбор и оценка данных технического процесса - мониторинг;

управление некоторыми параметрами технического процесса;

связь входных и выходных данных - обратная связь, автоматическое управление.

Рис. 1. Основные функции системы управления

Мониторинг процесса или сбор информации о процессе - это основная функция, присущая всем системам управления. Мониторинг - это сбор значений переменных процесса, их хранение и отображение в подходящей для человека-оператора форме. Мониторинг является фундаментальным свойством всех систем обработки данных.

Мониторинг может быть ограничен лишь выводом первичных или обработанных данных на экран монитора или на бумагу, а может включать более сложные функции анализа и отображения. Например, переменные, которые нельзя непосредственно измерить, должны рассчитываться или оцениваться на основе имеющихся измерений. Другой классической чертой мониторинга является проверка, что измеренные или рассчитанные значения находятся в допустимых пределах.

Когда функции системы управления процессом ограничены сбором и отображением данных, все решения об управляющих действиях принимаются оператором. Этот вид управления, называемый супервизорным или дистанционным управлением (supervisory control), был очень распространен в первых системах компьютерного управления процессами. Он до сих пор применяется, особенно для очень сложных и относительно медленных процессов, где важно вмешательство человека. Примером являются биологические процессы, где определенную часть наблюдений нельзя выполнить с помощью автоматики.

При поступлении новых данных их значение оценивается относительно допустимых границ. В более развитой системе контроля несколько результатов могут комбинироваться на основе более или менее сложных правил для проверки, находится ли процесс в нормальном состоянии или вышел за какие-либо допустимые пределы. В еще более современных решениях, в особенности построенных на экспертных системах или базах знаний, комбинированная оперативная информация от датчиков объединяется с оценками, сделанными операторами.

Управление - это функция, обратная мониторингу. В прямом смысле управление означает, что команды ЭВМ поступают к исполнительным механизмам для воздействия на физический процесс. Во многих случаях на параметры процесса можно воздействовать только опосредованно через другие параметры управления.

Система, которая действует автономно и без прямого вмешательства оператора, называется автоматической. Система автоматического управления может состоять из простых контуров управления (одного для каждой пары входных и выходных переменных процесса) или из более сложных регуляторов со многими входами и выходами.

Существуют два основных подхода к реализации обратной связи в вычислительных системах. При традиционном прямом цифровом управлении (ПЦУ, Direct Digital Control - DDC) центральная ЭВМ рассчитывает управляющие сигналы для исполнительных устройств. Все данные наблюдения передаются в полном объеме от датчиков к центру управления, а управляющие сигналы - обратно к исполнительным устройствам.

В системах распределенного прямого цифрового управления {Distributed Direct Digital Control - DDDC) вычислительная система имеет распределенную архитектуру, а цифровые регуляторы реализованы на основе локальных процессоров, т.е. расположены вблизи технического процесса. ЭВМ верхних уровней управления рассчитывают опорные значения, а локальные процессоры ответственны главным образом за непосредственное управление техническим процессом, т.е. выработку управляющих сигналов для исполнительных механизмов на основе данных локального мониторинга. Эти локальные ЭВМ включают в себя цифровые контуры управления.

Более простая и архаичная форма автоматизированного управления - это так называемое управление опорными значениями (setpoint control). ЭВМ рассчитывает опорные значения, которые затем передаются обычным аналоговым регуляторам. В этом случае ЭВМ применяется только для вычислений, а не для измерений или генерации управляющих воздействий.

Системы дистанционного мониторинга и управления обычно определяют общим названием SCADA (от Supervisory Control And Data Acquisition - Дистанционное управление и сбор данных). SCADA - это очень широкое понятие и может относиться как к достаточно простому устройству, реализованному на одном компьютере, так и к сложной, распределенной системе, включающей центр управления, периферийные устройства и систему связи. Идея SCADA включает применение совершенных средств отобра¬жения, накопления данных и дистанционного управления, чаще всего понимаемого как диспетчерское, т.е. «ручное» управление, но не включает процедур регулирования или управления; последние, однако, очень часто входят в поставляемые системы SCADA в качестве основных функций или в качестве функций по выбору заказчика.

Применение базы данных процесса для мониторинга и управления

Система управления среднего или большого размера имеет несколько сотен или тысяч точек взаимодействия с техническим процессом. Практически невозможно обработать всю соответствующую информацию с помощью программных модулей, написанных специально для каждой из этих точек. Вместо этого необходим систематический подход к обработке всех входных данных. Простое структурирование параметров процесса можно выполнить на основе записей, а для более сложных случаев необходимо применение аппарата полноценной базы данных с соответствующими методами доступа.

Для систематизации и уменьшения объема данных о процессе нужно рассмотреть природу соответствующей информации. Обычно это измеряемые величины или бинарные входные/выходные данные типа «включено/выключено» или «норма/авария». Благодаря регулярности такого представления входные данные можно обрабатывать универсальной программой сбора и интерпретации данных, которая работает на основе определенных параметров для каждого объекта. Параметры описания объектов хранятся в базе данных процесса, которая представляет собой центральный элемент программного обеспечения управляющей системы. Пример структуры базы данных процесса показан на рис. 2.

Программы для доступа к информации, хранящейся в базе данных, включают в числе прочего следующие подсистемы:

ввод данных и интерфейс с базой данных;

вывод данных, т.е. интерфейс между базой данных и выходом управляющей ЭВМ или исполнительных механизмов;

отображение данных;

интерфейс для ввода команд.

Развитые базы данных могут включать до двадцати параметров-описателей для каждого объекта ввода/вывода. Некоторые из этих описателей обязательны и встречаются в каждой реализации базы данных; остальные применяются только при определенных обстоятельствах.

База данных процесса придает однородность и структуру хранимым данным. Датчики и исполнительные механизмы в системе управления процессом могут быть самых разнообразных типов. Температуры могут измеряться резистором с положительным температурным коэффициентом, термопарой и цифровым устройством. Соответственно, информация от датчиков может поступать к центральному процессору как в исходном формате, так и в виде пакетов данных, возможно, уже преобразованных к ASCII кодам. С помощью базы данных процесса каждое измеренное значение обрабатывается независимо и преобразуется к единой форме. Модули прикладных программ должны лишь обращаться к базе данных и не нуждаются в информации об особенностях датчиков и исполнительных механизмов. Замена одного датчика другим или же новой моделью не потребует перепрограммирования каких-либо модулей - достаточно введения новых управляющих параметров в базу данных. Обновление базы данных можно выполнять в оперативном режиме без отключения системы управления.

Рис. 2. Структура базы данных процесса реального времени и модули для доступа к данным

Абстрактное описание и отделения результатов измерений от методов, с помощью которых они получены, полезно, если некоторые характеристики этих величин могут меняться. При этом нет необходимости модифицировать программы или останавливать систему управления - достаточно всего лишь переопределить параметры преобразования, хранящиеся в базе данных.

Доступ к базе данных процесса, запросы и протоколы

Доступ к информации, содержащейся в базе данных, выполняется с помощью трех основных операций, которые могут комбинироваться, - выбора, проекции и сортировки. Строго говоря, эти операции формально определены лишь для реляционных баз данных, тем не менее, их можно использовать и для баз данных другой структуры.

Выбор (selection) определяет операцию для извлечения из базы данных только записей, удовлетворяющих заданным критериям.

Проекция (projection) -. это список интересующих полей записи базы данных.

Сортировка (sorting) означает упорядочение выбранных записей в соответствии с каким-нибудь критерием.

Сочетание трех основных операций порождает большое число вариантов обработки и анализа данных. Обычно база данных содержит слишком много информации, воспринимать и анализировать которую целиком невозможно, однако при наличии соответствующих инструментов можно извлечь любую необходимую проблемно-ориентированную информацию. Операции доступа к базе данных и есть эти инструменты.

Операция по извлечению информации из базы данных называется запросом (query).

Для эффективного использования программ доступа к базе данных необходимо заранее выбрать подмножество интересующих данных. Обычно для каждой конкретной ситуации интерес может представлять лишь очень ограниченное число выборок из базы данных, поэтому заранее можно определить небольшой набор стандартных запросов. Такие запросы называются протоколами. Протоколы - это обычно запросы, в которых предопределены операции проекции и сортировки (какую информацию вывести и в каком порядке), а перед их запуском требуется указать только конкретные параметры.

Протоколы аварийной сигнализации.

Важнейшей функцией системы управления является быстрое выявление недопустимых режимов и оповещение об этом оператора. Каждое изменение состояния, классифицированное как аварийное, должно быть зафиксировано в специальном файле - журнале аварий - с указанием времени события.

Специальный запрос - аварийный протокол - используется для поиска и вывода всех объектов базы данных, которые находятся в данный момент времени в аварийном состоянии. Этот протокол чрезвычайно важен для обслуживания и ремонта.

Протоколы обслуживания.

Еще одной важной составляющей работы производственного предприятия является техническое обслуживание приборов и оборудования. Примеры обслуживания - замена изношенных инструментов, калибровка датчиков, контроль уровней горючего и смазки. Операции по обслуживанию могут быть еще сложнее, вплоть до разборки целых агрегатов для проверки состояния и очистки их узлов. Этот тип обслуживания называется предупредительным ремонтом (preventive maintenance) и выполняется для поддержания оборудования в оптимальном рабочем состоянии. Ремонт дефектных или вышедших из строя устройств называется восстановительным ремонтом (corrective maintenance).

Анализ данных и тренды.

Важной задачей в промышленном производстве является учет производительности и статистических показателей. Информация, содержащаяся в базе данных, может служить первичным источником для процедур статистической обработки. Основной статистической операцией является суммирование показателей по времени, т.е. вычисление нарастающих итоговых величин для заданных интервалов времени - день, неделя, месяц. Суммарные показатели можно выводить в виде статистических таблиц, содержащих и другие величины, рассчитанные на их основе, - показатели эффективности и качества.

Операции управления, выполняемые с использованием базы данных

В некоторых системах управления в базе данных хранятся указания на автоматические действия, которые выполняются в определенных ситуациях. Специальная таблица базы данных указывает, при каком значении некоторого параметра вызывается исполнительная команда. Эта таблица работает подобно ПЛК, хотя данные, которые она использует, находятся на более высоком уровне абстракции и могут включать производные величины.

Существует важное практическое различие в автоматизированных функциях и управлении процессом с использованием базы данных и системами на основе ПЛК или местных регуляторов. Последние установлены непосредственно возле входов и выходов процесса и могут быстро реагировать на изменения во входных данных. База данных иерархической системы управления, напротив, имеет большое время реакции, поскольку информация должна проследовать по коммуникационным каналам вверх и вниз и пройти через несколько этапов обработки. Поэтому целесообразно программировать автоматические реакции на уровне центральной ЭВМ только в том случае, когда нужно сравнить несколько параметров и эту операцию нельзя выполнить локально. Связанные контуры управления нельзя реализовать в виде системы распределенного прямого цифрового управления. В этом случае нужно принимать во внимание вероятность значительной перегрузки каналов связи.

Заключение

автоматизированная информационная система

В результате выполнения данной работы были сделаны следующие выводы.

Под системой понимают любой объект, который одновременно рассматривается и как единое целое.

Информационная система - это взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

АИС - это человеко-машинная система, обеспечивающая автоматизированную подготовку, поиск и обработку информации в рамках интегрированных сетевых, компьютерных и коммуникационных технологий для оптимизации экономической и другой деятельности в различных сферах управления.

Подсистема - это часть системы, выделенная по какому-либо признаку. При этом АИС состоит из двух подсистем: функциональной и обеспечивающей.

Среди обеспечивающих подсистем обычно выделяют информационное, техническое, математическое, программное, организационное и правовое обеспечение.

Системы, применительно к АСУ, могут быть проклассифицированы по ряду признаков. Системы делятся на примитивные элементарные (для них строятся автоматические системы управления) и большие сложные.

Список литературы

Гейтс Б. Бизнес со скоростью мысли. - М.: ЭКСМО-Пресс, 2005. - 73 с.

Густав О., Джангуидо П. Цифровые системы автоматизации и управления. - СПб.: Невский Диалект, 2005. - 557 с.

Друкер П. Задачи менеджмента в ХХI веке. - М.: Вильямс, 2006. - 153 с.

Информатика. Базовый курс / Симонович С.В. и др. - СПб: Питер, 2005. - 640 с.

Симонович С., Евсеев Г., Алексеев А. Общая информатика. - М.: АСТ-Пресс, 2006. - 592 с.

Уилсон С., Мэйплс Б., Лэндгрейв Т. Принципы проектирования и разработки программного обеспечения. - М.: Русская Редакция, 2005. - 249 с.

Устинова Г.М. Информационные системы менеджмента / Учебное пособие. - СПб: ДиаСофт ЮП, 2004. - 368 с.

1.1. АИС: основные понятия и определения

Прежде чем осмыслить любое сложное понятие, необходимо осмыслить входящие в него более простые понятия. Исходя из этого, прежде чем осмыслить понятие АИС, определим, что есть автоматизация, информация, система и информационная система.

Автоматизация - это замена физического и умственного труда человека работой технических средств, обеспечивающих выполнение работ с заданной производительностью и качеством без вмешательства человека, за которым остаются функции наблюдения и подготовки технических средств к эксплуатации.

Информация - сведения об объектах, явлениях, событиях, процессах окружающего мира, передаваемые устным, письменным или другим способом и уменьшающие неопределенность знаний о них. Эти знания отражают действительность в сознании (мышлении) человека. С середины XX в. информация становится общенаучным понятием, включающим обмен сведениями между людьми, человеком и автоматом, автоматом и автоматом.

Информация должна быть достоверной, полной, адекватной, т. е. определенного уровня соответствия, краткой, ясно и понятно выраженной, своевременной и ценной.

Система может представлять собой один объект или совокупность разнородных, но взаимодействующих и взаимосвязанных по определенным правилам объектов.

ГОСТ 34.003-90 (Приложение 1) дает следующее определение системы и автоматизированной системы.

«Система - совокупность элементов, объединенная связями между ними и обладающая определенной целостностью». Таким образом, система - это совокупность взаимодействующих (взаимосвязанных) элементов, объединенных единством цели и общими целенаправленными правилами взаимоотношений.

Под совокупностью элементов понимается набор элементов, который позволяет системе иметь общие характеристики.

Под взаимосвязанностью элементов подразумевается набор целенаправленных правил взаимоотношений между элементами.

Наличие взаимосвязей определяет организованную сложность системы. Она является свойством системы и определяет количество элементов в системе. Имеется и много элементов за пределами системы (внешняя сфера).

Локализация системы определяет границы системы, выделение ее элементов и связей (существующих и несуществующих).

Часто встречаются две ошибки: исключение существенных связей и учет несущественных связей.

При построении системы должна быть определена целевая функция и разработаны алгоритмы структуры и функции системы.

Когда мы говорим об информационной системе, то имеем в виду взаимосвязанную совокупность средств, методов и персонала, обеспечивающих сбор, хранение, обработку, поиск и выдачу необходимой потребителю информации.

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для сбора, хранения, обработки и выдачи информации в целях решения поставленных задач. Информационные системы необходимы в процессе принятия решений, они помогают анализировать проблемы и создавать новые продукты.

«Автоматизированная система - система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций» (ГОСТ 34.003-90, Приложение 1).

При рассмотрении систем выделяют три основных научных направления.

Системный подход - подход, основные задачи которого состоят в разработке методов анализа и синтеза объектов, описания их целостных характеристик, исходя из целенаправленности поведения исследуемой системы и ее частей, взаимодействия с окружающей средой.

Общая теория систем - теория, основная задача которой состоит в том, чтобы, опираясь на понимание системы в виде комплекса взаимосвязанных элементов, найти совокупность законов, объясняющих поведение, развитие и функционирование системы.

Системный анализ - совокупность методов и методик выработки и принятия решений при проектировании, конструировании и управлении сложными объектами (социальными, экономическими, техническими и т. д.).

Следует четко различать понятия информационная система и информационная технология.

«Информационная технология - приемы, способы и методы применения средств вычислительной техники при выполнении функций сбора, хранения, обработки и использования данных» (ГОСТ 34.003-90).

Закон РФ «Об информации, информатизации и защите информации» от 20.02.1995 г. дает определение ИС, имея в виду, что это АИС (автоматизированная информационная система):

«Информационная система - организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе и с использованием средств вычислительной техники и связи, реализующих информационные процессы».

Кроме АИС широко распространены АСУ, которым также присущи многие функции АИС, но кроме них еще и функции управления различными объектами и процессами.

Таким образом, АИС - комплекс информационных, программных, технических, организационно-методических и других необходимых средств, обеспечивающих сбор, обработку, хранение, передачу данных, а также манипулирование ими для решения различных задач.

Управление - целенаправленное воздействие на любой самодвижущийся объект или процесс, в результате чего происходит как качественное, так и количественное изменение переменных, определяющих состояние объекта или процесса.

Выделяют два вида управления: предметами и людьми. В первом случае - это управление орудиями производства и различными технологическими процессами. Во втором случае - это управление группой людей (коллективом), обеспечивающее единство действий в целенаправленной работе.

«Автоматизированная система управления (АСУ) - человеко-машинная система, реализующая автоматизированный сбор и переработку информации, необходимой для принятия решений по управлению объектом. АСУ создают для оптимального управления в различных сферах деятельности.

Автоматизированные информационные системы можно разделить на:

  • системы информационного обеспечения, имеющие самостоятельное целевое назначение и область применения;
  • системы (подсистемы) информационного обеспечения, входящие в состав автоматизированных систем управления (АСУ).

АИС первой группы, как правило, содержат информационную базу, используемую различными потребителями для удовлетворения информационных потребностей при принятии решений. Примером таких систем могут служить электронные библиотечные каталоги, АИС по законодательству (например, Консуль-тант+, Гарант), системы электронного документооборота финансовых документов (например, «Система электронной обработки данных местного уровня» для автоматизации работы районных налоговых инспекций).

К этой группе можно отнести следующие системы:

  • информационно-справочные и информационно-поисковые;
  • автоматизации документооборота;
  • обучающие;
  • экспертные;
  • искусственного интеллекта;
  • геоинформационные;
  • гипертекстовые и другие.

Информационно-справочные (ИСС) и информационно-поисковые системы (ИПС) делят на документальные и фактографические.

Документальные системы - системы, предназначенные для поиска, обработки и вывода списков документов по определенным темам и признакам, полных текстов документов или их рефератов, справок различного назначения. Примером могут служить, поисковые возможности системы Консультант+ (См. Приложение 2).

Фактографические системы - системы, предназначенные для поиска, накопления, хранения, обработки и вывода данных по каким-либо фактам, событиям, сведениям.

Системы автоматизации документооборота - совокупность методов и средств для перевода документооборота из бумажной формы в электронную. Например, электронные депозитарии - базы данных, в которых хранятся записи об акционерах.

Обучающие системы - системы тренировочные и контролирующие, наставнические, имитационные и моделирующие, развивающие игры.

Тренировочные и контролирующие системы предназначены для закрепления умений и навыков на основе пройденного теоретического материала. Обучение идет во время ответов обучаемых на предлагаемые вопросы. Если ответы неправильные, предлагаются подсказки.

Наставнические системы предназначены для изучения теоретического материала путем диалога «человек-машина». Если ответы обучаемого неверны, программа предлагает повторно изучить материал.

Имитационные и моделирующие системы используют графически-иллюстративные и вычислительные возможности компьютерных программ и предназначены для построения моделей и ситуаций с возможностью изменения их параметров.

Развивающие игры предлагают обучаемому воображаемую среду, используя возможности которой он реализует те или иные условия и комбинации.

Наиболее известные отечественные обучающие программы: «Урок», «Магистр», «Адонис» и другие, а также зарубежные - «Linkway», «TeachCad» и другие. Многие из обучающих систем являются мультимедийными.

Экспертные системы (ЭС) - системы, которые с помощью ЭВМ и ПО выполняют функции экспертов при решении задач в области их компетенции.

В экспертных системах накапливаются и могут долго храниться ценные данные и знания. В состав ЭС обычно входит база знаний и подсистемы вывода, объяснения, приобретения знаний и другие.

Экспертные системы могут проводить анализ ситуации, выдавать советы и консультации, ставить объективный диагноз. Они решают задачи, которые обычно выполняет специалист в результате проведения экспертизы. ЭС решают задачи на основе дедуктивных рассуждений с помощью эвристик (интуитивно найденных правил), поэтому могут находить решения задач, которые плохо определены и неструктурированны.

По степени автоматизации ЭС делят на:

  • информационные - системы, включающие необходимую информацию для выработки решений, не затрагивая самой сути решений, которые после анализа принимает человек;
  • информационно-советующие - системы, предоставляющие информацию для принятия решений и содержащие элементы оценки решений, но окончательное решение принимает человек;
  • управляющие - системы, осуществляющие по заданным программам целенаправленное воздействие на производственный объект или процесс на основе исходной информации и выработанных решений;
  • самонастраивающиеся - системы, которые могут в рамках заданного алгоритма изменить программу при ситуациях, не заданных в ней.

ЭС помогают организациям повышать квалификацию специалистов и эффективность работы. В настоящее время уже имеются тысячи экспертных систем, охватывающих самые разные предметные области. В качестве примеров можно привести DENDRAL - старейшую ЭС в области химии, PROSPECTOR - систему для коммерчески оправданного поиска полезных ископаемых, MYCIN - ЭС в области медицинской диагностики и многие другие.

Системы искусственного интеллекта - системы, в которых с помощью ЭВМ решаются сложные исследовательские задачи. Это задачи машинного перевода с одного естественного языка на другой, автоматического доказательства теорем, распознавания изображений, алгоритмов и стратегий игр, планирования действий роботов и другие.

Искусственный интеллект - совокупность научных дисциплин, изучающих методы решения интеллектуальных (творческих) задач с использованием ЭВМ.

Геоинформационные системы - системы, в которых все данные об объектах привязаны к общей электронной топографической основе. Эти системы предназначены для использования в тех предметных областях, в которых структура объектов и процессов имеет пространственно-географическую привязку.

Гипертекстовые системы - системы с ассоциативным связыванием текстов, так называемым гипертекстом. Гипертекст - обычный текст, который содержит ссылки на связанные по смыслу фрагменты текста того же или другого документа. Гипертекстовые ИПС основаны на идее ассоциативно-навигационного подхода к анализу текстовой информации. Широкое применение они нашли в сети Интернет. С помощью текстового редактора (например, МиШЕсШ) или браузера Интернет пользователь, «щелкнув» мышью по выделенному цветом слову (по гиперссылке), может открыть связанный по этой ссылке текст. Техника гипертекста стала в настоящее время основой для создания разных компьютерных справочных и учебных систем и энциклопедий.

АИС второй группы являются важнейшей составляющей различных АСУ:

  • АСУП - АСУ предприятия;
  • АСУ ТП - АСУ технологическими процессами;
  • АСУ ТО - АСУ территориальными организациями;
  • ОГАС - общегосударственная автоматизированная система;
  • АСПР - автоматизированных систем плановых расчетов;
  • АСГС - АС государственной статистики;
  • САПР - систем автоматизированного проектирования;
  • АСНИ - АС научных исследований.

В АСУ вычислительная техника используется не только в процессах сбора, хранения и обработки данных, но и в процессах принятия управленческих решений. АСУ базируются на использовании экономико-математических методов, средств вычислительной техники, средств получения и передачи данных. Особенностью является использование средств телекоммуникаций для получения данных с мест их возникновения, а также для отправки информации исполнителям и потребителям.

АСУ - человеко-машинная система, обеспечивающая автоматический сбор и обработку информации с помощью различных программно-аппаратных средств, однако функции контроля и принятия решений выполняются человеком или группой людей.

АСУ можно классифицировать по признакам назначения, ранга, характера действия, сложности и т. д.:

  • по назначению - движущимися объектами, диспетчерские, организационные, предприятия, энергетическими установками, технологическими процессами и т. д.;
  • по рангу (уровню управления) - локальные (в рамках одной организации), региональные, отраслевые, межотраслевые, республиканские, общегосударственные и международные;
  • по характеру действия - непрерывные и дискретные;
  • по сложности - малые, средние, большие.

В нашей стране действуют тысячи АСУ во всех отраслях экономики, культуры, образования, медицины.

Эффективно работает и совершенствуется, например, АСУ «Экспресс» - система обслуживания пассажиров и управления перевозками на железнодорожном транспорте. Эта АСУ представляет собой комплекс технических, программных, информационных, технологических и административных средств. Система базируется на ЭВМ единой серии, на единой международной нумерации пассажирских станций и на единой нумерации поездов. Система продажи билетов включает примерно 17 тысяч касс и 10 вычислительных центров (ВЦ). ВЦ имеют машинные вычислительные системы, устройства связи и коммутации (телеобработки). Билетные кассиры с помощью периферийной аппаратуры на своих автоматизированных рабочих местах (АРМ) могут выполнять различные операции по обслуживанию пассажиров.

АСУ «Сирена» - система обслуживания пассажиров Аэрофлота. Она предназначена для резервирования и учета мест на авиалайнерах, продажи билетов и выдачи информации о работе Аэрофлота в крупных городах. Система базируется на больших ЭВМ, взаимодействующих с большим количеством АРМ в пунктах продажи билетов на самолеты. Базы данных «Сирены» хранят годовое расписание авиарейсов, связывающих столицы СНГ и крупных городов России, данные о стоимости перевозок, о наличии свободных мест на каждый авиарейс и другую информацию. Обеспечивается актуализация баз данных.

АСУ «Аврора» введена в действие для обслуживания пассажиров международных линий. Она по многим функциям подобна АСУ «Сирена».

Управление связано с обменом информацией между элементами системы, а также системы с окружающей средой.

Здесь следует отметить, что в системах организационного управления выделяют экономическую информацию , связанную с управлением людьми, и техническую информацию , связанную с управлением техническими объектами.

Экономическая информация представляет собой совокупность различных сведений экономического характера, которые можно фиксировать, передавать обрабатывать, хранить и использовать в процессе планирования, учета, контроля, анализа.

Экономическая информация включает сведения о трудовых, материальных и денежных ресурсах и состоянии объекта управления на определенный момент времени.

Экономическая информация характеризуется большим объемом, многократным использованием, обновлением и преобразованием, большим числом логических операций и относительно несложных математических расчетов для получения многих видов результативной информации.

Теперь мы последовательно переходим к определению понятия «автоматизированная информационная система» основной частью, которой является автоматизированная информационная технология.

Автоматизированная информационная система представляет собой совокупность информации, экономико-математических методов и моделей, технических, программных средств и специалистов , предназначенную для обработки информации и принятия управленческих решений.

Таким образом, автоматизированная информационная система есть в терминологии советских ГОСТов – автоматизированная система управления (АСУ) (далее для краткости – автоматизированная системы).

Как мы уже отмечали ранее, создание автоматизированных систем способствует повышению эффективности производства экономического объекта и обеспечивает качество управления. Наибольшая эффективность АСУ достигается при оптимизации планов работы предприятий, быстрой выработке оперативных решений, четком маневрировании материальными и финансовыми ресурсами и т.д.

Поэтому процесс управления в условиях функционирования АСУ основывается на экономико-математических моделях, которые более или менее адекватно отражают свойства объекта управления.

Контрольные вопросы к разделу 1.1

1. Что такое информация, автоматизация, система?
2. Что понимается под совокупностью элементов, их взаимосвязанностью?
3. Что такое локализация системы и ее организованная сложность?
4. В чем заключается разница между информационной системой и информационной технологией?
5. Каково определение автоматизированной информационной системы?
6. На какие группы можно разделить автоматизированные информационные системы?
7. Какие системы можно отнести к каждой группе АИС?

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Кафедра «Менеджмент»

по дисциплине «Проектирование организаций»

«Автоматизированная информационная система (АИС): предпосылки внедрения в организации и возможности использования в оргпроектировании систем управления »

Выполнила студентка группы Э203-12:

Черепанова Н. А.

Проверил: канд. экон. наук доцент:

Суркова С. А.

Курган 2014

Введение

2. Понятия автоматизированной информационной системы и ее структурные компоненты

3. Классификация автоматизированных информационных систем

4. Основные функции автоматизированных информационных систем

5. Предпосылки внедрения в организации автоматизированных информационных систем

Заключение

Список литературы

Введение

Эффективное управление предприятием в современных условиях невозможно без использования компьютерных технологий. Правильный выбор программного продукта и фирмы-разработчика - это первый и определяющий этап автоматизации бухгалтерского учета. В настоящее время проблема выбора информационной системы (ИС) из специфической задачи превращается в стандартную процедуру. В этом смысле российские предприятия сильно уступают зарубежным конкурентам. Иностранные предприятия, как правило, имеют опыт модернизации и внедрения не одного поколения ИС. В развитых западных странах происходит смена уже четвертого поколения ИС. На российских предприятиях зачастую используют системы первого или второго поколения.

Руководители многих российских предприятий имеют слабое представление о современных компьютерных интегрированных системах и предпочитают содержать большой штат собственных программистов, которые разрабатывают индивидуальные программы для решения стандартных управленческих задач.

Процедура принятия решения о выборе наиболее эффективной компьютерной системы управления нова для большинства отечественных руководителей, а ее последствия во многом будут оказывать значительное влияние на предприятие в течение нескольких лет. Т.к. применение интегрированной ИС, которая отвечала бы требованиям предприятия (масштабу, специфике бизнеса и т.д.), позволила бы руководителю минимизировать издержки и повысить оперативность управления предприятием в целом.

Автоматизированная информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Таким образом, автоматизированная информационная система (АИС) представляет собой совокупность информации, экономико-математических методов и моделей, технических, программных, технологических средств и специалистов, предназначенная для обработки информации и принятия управленческих решений.

Целью данной работы является рассмотрение сущности автоматизированных информационных систем.

2. Понятие автоматизированной информационной системы и ее структурные компоненты

Под системой понимают любой объект, который одновременно рассматривается и как единое целое, и как объединенная в интересах достижения поставленных целей совокупность разнородных элементов. Системы значительно отличаются между собой как по составу, так и по главным целям.

В информатике понятие «система» широко распространено и имеет множество смысловых значений. Чаще всего оно используется применительно к набору технических средств и программ. Системой может называться аппаратная часть компьютера. Системой может также считаться множество программ для решения конкретных прикладных задач, дополненных процедурами ведения документации и управления расчетами.

Добавление к понятию «система» слова «информационная» отражает цель ее создания и функционирования. Информационные системы обеспечивают сбор, хранение, обработку, поиск, выдачу информации, необходимой в процессе принятия решений задач из любой области. Они помогают анализировать проблемы и создавать новые продукты.

Информационная система - взаимосвязанная совокупность средств, методов и персонала, используемых для хранения, обработки и выдачи информации в интересах достижения поставленной цели.

Современное понимание информационной системы предполагает использование в качестве основного технического средства переработки информации персонального компьютера. В крупных организациях наряду с персональным компьютером в состав технической базы информационной системы может входить суперЭВМ. Кроме того, техническое воплощение информационной системы само по себе ничего не будет значить, если не учтена роль человека, для которого предназначена производимая информация и без которого невозможно ее получение и представление, поэтому

Автоматизированная информационная система (АИС) - это человеко-машинная система, обеспечивающая автоматизированную подготовку, поиск и обработку информации в рамках интегрированных сетевых, компьютерных и коммуникационных технологий для оптимизации экономической и другой деятельности в различных сферах управления.

На этой основе создаются различные автоматические и автоматизированные системы управления технологическими процессами. Типичным примером таких систем может служить в связи - автоматическая коммутационная станция. В этой системе управление осуществляется с помощью технических устройств типа процессоров или других более простых приборов. Человек-оператор не входит в контур управления, замыкающий связи объекта и органа управления, а лишь следит за ходом технологического процесса и по мере необходимости (например, в случае сбоя) вмешивается. Иначе обстоит дело с автоматизированной системой управления производственным процессом. В АС производственными процессами и объект и орган управления представляет собой единую человеко-машинную систему, человек обязательно входит в контур управления. По определению АС - это человеко-машинная система, предназначенная для сбора и обработки информации, необходимой для управления производственным процессом, то есть управления коллективами людей. Иначе говоря, успех функционирования таких систем во многом зависит от свойств и особенностей жизнедеятельности человеческого фактора. Без человека система АС производством самостоятельно не может работать, так как человек формирует задачи, разрабатывает все виды обеспечивающих подсистем, выбирает из выданных ЭВМ вариантов решений наиболее рациональный. И, разумеется, человек, что очень важно, в конечном счете юридически отвечает за результаты реализации принятых им решений. Как видим, роль человека огромна и не заменима. Человек организует программу подготовительных мероприятий перед созданием АС, следовательно, требуется помимо всего прочего специальное организационное и правовое обеспечение.

Структуру АИС составляет совокупность отдельных ее частей, называемых подсистемами. Подсистема - это часть системы, выделенная по какому-либо признаку.

АС состоит из двух подсистем: функциональной и обеспечивающей. Функциональная часть АС включает в себя ряд подсистем, охватывающих решение конкретных задач планирования, контроля, учета, анализа и регулирования деятельности управляемых объектов. В ходе аналитического обследования могут быть выделены различные подсистемы, набор которых зависит от вида предприятия, его специфики, уровня управления и других факторов. Для нормальной деятельности функциональной части АС в ее состав входят подсистемы обеспечивающей части АС (так называемые обеспечивающие подсистемы).