Виды компьютерных атак. Интегрированная система генерации отчетов. o Контроль частоты событий или превышение пороговой величины

С помощью таких программ, как WinNuke, Papa Smurf и Teardrop злоумышленники могут атаковать ваши компьютеры и нанести вам ущерб. Согласно опросу за 1999 год Института Компьютерной Безопасности и ФБР о компьютерных преступлениях 57 процентов опрошенных организаций сообщили, что считают соединения их сетей с Интернет "местом, откуда часто организуются атаки". 30 процентов опрошенных сообщило, что имели место случаи проникновения в их сети, а 26 процентов сказали, что в ходе атак происходила кража конфиденциальной информации. Федеральный центр по борьбе с компьютерными преступдениями в США - FedCIRC сообщил, что в 1998 году атакам подверглось около 130000 государственных сетей с 1100000 компьютерами. Классификация компьютерных атак Когда мы говорим "компьютерная атака", мы имеем в виду запуск людьми программ для получения неавторизованного доступа к компьютеру. Формы организации атак весьма разнообразны, но в целом все они принадлежат к одной из следующих категорий: Удаленное проникновение в компьютер: программы, которые получают неавторизованный доступ к другому компьютеру через Интернет (или локальную сеть) Локальное проникновение в компьютер: программы, которые получают неавторизованный доступ к компьютеру, на котором они работают. Удаленное блокирование компьютера: программы, которые через Интернет (или сеть) блокируют работу всего удаленного компьютера или отдельной программы на нем (для восстановления работоспособности чаще всего компьютер надо перезагрузить) Локальное блокирование компьютера: программы, которые блокируют работу компьютера, на котором они работают Сетевые сканеры: программы, которые осуществляют сбор информации о сети, чтобы определить, какие из компьютеров и программ, работающих на них, потенциально уязвимы к атакам. Сканеры уязвимых мест программ: программы, проверяют большие группы компьютеров в Интернете в поисках компьютеров, уязвимых к тому или иному конкретному виду атаки. Вскрыватели паролей: программы, которые обнаруживают легко угадываемые пароли в зашифрованных файлах паролей. Сейчас компьютеры могут угадывать пароли так быстро, что казалось бы сложные пароли могут быть угаданы. Сетевые анализаторы (снифферы): программы, которые слушают сетевой трафик. Часто в них имеются возможности автоматического выделения имен пользователей, паролей и номеров кредитных карт из трафика. Как защититься от большинства компьютерных атак Защита сети от компьтерных атак - это постоянная и нетривиальная задача; но ряд простых средств защиты смогут остановить большинство попыток проникновения в сеть. Например, хорошо сконфигурированный межсетевой экран и антивирусные программы, установленные на всех рабочих станциях, смогут сделать невозможными большинство компьютерных атак. Ниже мы кратко опишем 14 различных средств защиты, реализация которых поможет защитить вашу сеть. Оперативная установка исправлений для программ (Patching) Компании часто выпускают исправления программ, чтобы ликвидировать неблагоприятные последствия ошибок в них. Если не внести исправления в программы, впоследствии атакующий может воспользоваться этими ошибками и проникнуть в ваш компьютер. Системные администраторы должны защищать самые важные свои системы, оперативно устанавливая исправления для программ на них. Тем не менее, установить исправления для программ на всех хостах в сети трудно, так как исправления могут появляться достаточно часто. В этом случае надо обязательно вносить исправления в программы на самых важных хостах, а кроме этого установить на них другие средства защиты, описанные ниже. Обычно исправления должны получаться ТОЛЬКО от производителей программ. Обнаружение вирусов и троянских коней Хорошие антивирусные программы - незаменимое средство для повышения безопасности в любой сети. Они наблюдают за работой компьютеров и выявляют на них вредоносные программы. Единственной проблемой, возникающей из-за них, является то, что для максимальной эффективности они должны быть установлены на всех компьютерах в сети. На установку антивирусных программ на всех компьютерах и регулярное обновление антивирусных баз в них может уходить достаточно много времени - но иначе это средство не будет эффективным. Пользователей следует учить, как им самим делать эти обновления, но при этом нельзя полностью полагаться на них. Помимо обычной антивирусной программе на каждом компьютере мы рекомендуем, чтобы организации сканировали приложения к электронным письмам на почтовом сервере. Таким образом можно обнаружить большинство вирусов до того, как они достигнут машин пользователей. Межсетевые экраны Межсетевые экраны (firewalls) - это самое важное средство защиты сети организации. Они контролируют сетевой трафик, входящий в сеть и выходящий из нее. Межсетевой экран может блокировать передачу в сеть какого-либо вида трафика или выполнять те или иные проверки другого вида трафика. Хорошо сконфигуированный межсетевой экран в состоянии остановить большинство известных компьютерных атак. Вскрыватели паролей (Password Crackers) Хакеры часто используют малоизвестные уязвимые места в компьютерах для того, чтобы украсть файлы с зашифрованными паролями. Затем они используют специальные программы для вскрытия паролей, которые могут обнаружить слабые пароли в этих зашифрованных файлах. Как только слабый пароль обнаружен, атакующий может войти в компьютер, как обычный пользователь и использовать разнообразные приемы для получения полного доступа к вашему компьютеру и вашей сети. Хотя это средство используются злоумышленниками, оно будет также полезно и системным администраторам. Они должны периодически запускать эти программы на свои зашифрованные файлы паролей, чтобы своевременно обнаружить слабые пароли. Шифрование Атакующие часто проникают в сети с помощью прослушивания сетевого трафика в наиболее важных местах и выделения из него имен пользователей и их паролей. Поэтому соединения с удаленными машинами, защищаемые с помощью пароля, должны быть зашифрованы. Это особенно важно в тех случаях, если соединение осуществляется по Интернет или с важным сервером. Имеется ряд коммерческих и бесплатных программ для шифрования трафика TCP/IP (наиболее известен SSH). Сканеры уязвимых мест Это программы, которые сканируют сеть в поисках компьютеров, уязвимых к определенным видам атак. Сканеры имеют большую базу данных уязвимых мест, которую они используют при проверке того или иного компьютера на наличие у него уязвимых мест. Имеются как коммерческие, так и бесплатные сканеры. Грамотное конфигурирование компьютеров в отношении безопасности Компьютеры с заново установленными операционными системами часто уязвимы к атакам. Причина этого заключается в том, что при начальной установке операционной системы обычно разрешаются все сетевые средства и часто разрешаются небезопасным образом. Это позволяет атакующему использовать много способов для организации атаки на машину. Все ненужные сетевые средства должны быть отключены. Боевые диалеры(war dialer) Пользователи часто обходят средства защиты сети организации, разрешая своим компьютерам принимать входящие телефонные звонки. Пользователь перед уходом с работы включает модем и соответствующим образом настраивает программы на компьютере, после чего он может позвонить по модему из дома и использовать корпоративную сеть. Атакующие могут использовать программы-боевые диалеры для обзвонки большого числа телефонных номеров в поисках компьютеров, обрабатывающих входящие звонки. Так как пользователи обычно конфигурируют свои компьютеры сами, они часто оказываются плохо защищенными и дают атакующему еще одну возможность для организации атаки на сеть. Системные администраторы должны регулярно использовать боевые диалеры для проверки телефонных номеров своих пользователей и обнаружения сконфигурированных подобным образом компьютеров. Имеются как коммерческие, так и свободно распространяемые боевые диалеры. Рекомендации по безопасности (security advisories) Рекомендации по безопасности - это предупреждения, публикуемые группами по борьбе с компьютерными преступлениями и производителями программ о недавно обнаруженных уязвимых местах. Рекомендации обычно описывают самые серьезные угрозы, возникающие из-за этих уязвимых мест и поэтому являются занимающими мало времени на чтение, но очень полезными. Они описывают в-целом угрозу и дают довольно конкретные советы о том, что нужно сделать для устранения данного узявимого места. Найти их можно в ряде мест, но двумя самыми полезными являются те рекомендации, которые публикует группа по борьбе с компьютерными преступлениями CIAC и CERT Средства обнаружения атак (Intrusion Detection) Системы обнаружения атак оперативно обнаруживают компьютерные атаки. Они могут быть установлены за межсетевым экраном, чтобы обнаруживать атаки, организуемые изнутри сети. Или они могут быть установлены перед межсетевым экраном, чтобы обнаруживать атаки на межсетевой экран. Средства этого типа могут иметь разнообразные возможности. Имеется статья об их использовании и видах систем обнаружения атак Средства выявления топологии сети и сканеры портов Эти программы позволяют составить полную картину того, как устроена ваша сеть и какие компьютеры в ней работают, а также выявить все сервисы, которые работают на каждой машине. Атакующие используют эти средства для выявления уязвимых компьютеров и программ на них. Системные администраторы должны использовать эти средства для наблюдения за тем, какие программы и на каких компьютерах работают в их сети. С их помощью можно обнаружить неправильно сконфигурированные программы на компьютерах и установить исправления на них. Группа по расследованию происшествий с безопасностью В каждой сети, независимо от того, насколько она безопасна, происходят какие-либо события, связанные с безопасностью (может быть даже ложные тревоги). Сотрудники организации должны заранее знать, что нужно делать в том или ином случае. Важно заранее определить следующие моменты - когда вызывать правоохранительные органы, когда вызывать сотрудников группы по борьбе с компьютерными преступлениями, когда следует отключить сеть от Интернет, и что делать в случае компрометации важного сервера. CERT предоставляет общие консультации в рамках США. FedCIRC отвечает за консультирование гражданских государственных учреждений в США. Политики безопасностиСистема сетевой безопасности насколько сильна, насколько сильно защищено самое слабое ее место. Если в рамках одной организации имеется несколько сетей с различными политиками безопасности, то одна сеть может быть скомпрометирована из-за плохой безопасности другой сети. Организации должны написать политику безопасности, в которой определялся бы ожидаемый уровень защиты, который должен быть везде единообразно реализован. Самым важным аспектом политики является выработка единых требований к тому, какой трафик должен пропускаться через межсетевые экраны сети. Также политика должна определять как и какие средства защиты (например, средства обнаружения атак или сканеры уязвимых мест) должны использоваться в сети. Для достижения единого уровня безопасности политика должна определять стандартные безопасные конфигурации для различных типов компьютеров. Тестирование межсетевых экранов и WWW-серверов на устойчивость к попыткам их блокирования Атаки на блокирование компьютера распространены в Интернет. Атакующие постоянно выводят из строя WWW-сайты, перегружают компьютеры или переполняют сети бессмысленными пакетами. Атаки этого типа могут быть очень серьезными, особенно если атакующий настолько умен, что организовал продолжительную атаку, у которой не выявить источник. Сети, заботящиеся о безопасности, могут организовать атаки против себя сами, чтобы определить, какой ущерб может быть нанесен им. Мы рекомендуем проводить этот вид анализа на уязвимость только опытным системным администраторам или специальным консультантам.


В ноябре 2000 г. некоторые информационные агентства, в частности Lenta.ru, сообщили о том, что злоумышленники осуществили несанкционированный доступ к компьютерной сети "Газпрома" и временно получили полный контроль над газовыми потоками. В компьютерные сети "Газпрома" были внедрены 24 программы, называемые "троянскими конями", посредством которых и были получены соответствующие данные для успешной хакерской атаки. В итоге центральный пункт управления газовыми потоками стал временно подконтролен внешним пользователям. Был ли нанесен какой-либо реальный ущерб, в официальном сообщении не говорится, однако можно предположить, что без такового вряд ли обошлось. Ведь центральный пункт управления -- это главный информационный центр, с которого можно не только управлять газовыми потоками, но и копаться в массивных банках и базах данных; и изменять данные -- тоже можно.

До сих пор нет точного определения понятия "атака" (вторжение, нападение). Каждый специалист в области безопасности трактует его по-своему. Например, "вторжение - это любое действие, переводящее систему из безопасного состояния в опасное". Данный термин может объясняться и так: "вторжение -- это любое нарушение политики безопасности" или "любое действие, приводящее к нарушению целостности, конфиденциальности и доступности системы и информации, в ней обрабатываемой". Однако более правильной представляется нижеприведенная трактовка, тесно увязанная с термином "уязвимость", использованным в статье, посвященной системам анализа защищенности и опубликованной в прошлом номере "Сетевого журнала". Атакой (attack, intrusion) на информационную систему называется действие или последовательность связанных между собой действий нарушителя, которые приводят к реализации угрозы путем использования уязвимостей этой информационной системы. Другими словами, если бы можно было устранить уязвимости информационных систем, то тем самым была бы устранена и возможность реализации атак.


На сегодняшний день неизвестно, сколько существует методов атак. Связано это в первую очередь с тем, что до сих пор отсутствуют какие-либо серьезные математические исследования в этой области. Из близких по тематике исследований можно назвать работу, написанную в 1996 году Фредом Коэном, в которой описаны математические основы вирусной технологии. Как один из результатов этой работы приведено доказательство бесконечности числа вирусов. То же можно сказать и об атаках, поскольку вирусы -- одно из подмножеств атак.

Модели атак

Традиционная модель атаки строится по принципу "один к одному" (рис. 1.) или "один ко многим" (рис. 2.), т. е. атака исходит из одного источника. Разработчики сетевых средств защиты (межсетевых экранов, систем обнаружения атак и т. д.) ориентированы именно на традиционную модель атаки. В различных точках защищаемой сети устанавливаются агенты (сенсоры) системы защиты, которые передают информацию на центральную консоль управления. Это облегчает масштабирование системы, упрощает удаленное управление и т. д. Однако такая модель не справляется с относительно недавно (в 1998 году) обнаруженной угрозой - распределенными атаками.

В модели распределенной или скоординированной (distributed или coordinated attack) атаки используются иные принципы. В отличие от традиционной модели "один к одному" и "один ко многим", в распределенной модели используются принципы "многие к одному" и "много ко многим" (рис. 3 и 4 соответственно).

Распределенные атаки основаны на "классических" атаках типа "отказ в обслуживании", которые будут рассмотрены ниже, а точнее, на их подмножестве, известном как Flood- или Storm-атаки (указанные термины можно перевести как "шторм", "наводнение" или "лавина"). Смысл данных атак заключается в посылке большого количества пакетов на заданный узел или сегмент сети (цель атаки), что может привести к выведению этого узла или сегмента из строя, поскольку он захлебнется в лавине посылаемых пакетов и не сможет обрабатывать запросы авторизованных пользователей. По такому принципу работают атаки SYN-Flood, Smurf, UDP Flood, Targa3 и т. д. Однако в том случае, если пропускная способность канала до цели атаки превышает пропускную способность атакующего или целевой узел некорректно сконфигурирован, то "успеха" такая атака не достигнет. Скажем, с помощью этих атак бесполезно пытаться нарушить работоспособность своего провайдера. В случае же распределенной атаки ситуация коренным образом меняется. Атака происходит уже не из одной точки интернета, а сразу из нескольких, что приводит к резкому возрастанию трафика и выведению атакуемого узла из строя. Например, по данным "России-Онлайн", в течение двух суток, начиная с 9 часов утра 28 декабря 2000 г. крупнейший интернет-провайдер Армении "Арминко" подвергался распределенной атаке. В данном случае к атаке подключилось более 50 машин из разных стран, которые посылали по адресу "Арминко" бессмысленные сообщения. Кто организовал эту атаку и в какой стране находился хакер, установить было невозможно. Хотя атаке подвергся в основном "Арминко", перегруженной оказалась вся магистраль, соединяющая Армению с Всемирной Паутиной. 30 декабря благодаря сотрудничеству "Арминко" и другого провайдера -- "АрменТел" связь была полностью восстановлена. Компьютерная атака, правда, продолжалась, но с меньшей интенсивностью.

Этапы реализации атак

Можно выделить следующие этапы реализации атаки: предварительные действия, или сбор информации (information gathering), реализация атаки (exploitation) и завершение атаки. Обычно когда говорят об атаке, то подразумевают именно второй этап, забывая о первом и последнем. Сбор информации и завершение атаки ("заметание следов") в свою очередь также могут являться атакой и могут быть разделены на три этапа (рис. 5).

Основной этап -- это сбор информации. Именно эффективность работы злоумышленника на данном этапе является залогом "успешности" атаки. В первую очередь выбирается цель атаки и собирается информация о ней (тип и версия операционной системы, открытые порты и запущенные сетевые сервисы, установленное системное и прикладное программное обеспечение и его конфигурация и т. д.). Затем идентифицируются наиболее уязвимые места атакуемой системы, воздействие на которые приводит к нужному злоумышленнику результату.

Межсетевые экраны неэффективны против множества атак.

На первом этапе злоумышленник пытается выявить все каналы взаимодействия цели атаки с другими узлами. Это позволит выбрать не только тип реализуемой атаки, но и источник ее реализации. Например, атакуемый узел взаимодействует с двумя серверами под управлением ОС Unix и Windows NT. С одним сервером атакуемый узел имеет "доверительные" отношения, а с другим -- нет. От того, через какой сервер злоумышленник будет реализовывать нападение, зависит, какая атака будет задействована, какое средство реализации будет выбрано, и т. д. Затем, в зависимости от полученной информации и преследуемых целей, выбирается атака, дающая наибольший эффект. Например, для нарушения функционирования узла можно использовать SYN Flood, Teardrop, UDP Bomb и т. д., а для проникновения на узел и кражи информации - CGI-скрипт PHF для кражи файла паролей, удаленный подбор пароля и т. п. Затем наступает второй этап -- реализация выбранной атаки.


Традиционные средства защиты, такие, как межсетевые экраны или механизмы фильтрации в маршрутизаторах, вступают в действие на втором этапе, совершенно "забывая" о первом и третьем. Это приводит к тому, что зачастую совершаемую атаку очень трудно остановить даже при наличии мощных и дорогих средств защиты. Пример тому -- распределенные атаки. Логично было бы, чтобы средства защиты начинали работать еще на первом этапе, т. е. предотвращали бы саму возможность сбора информации об атакуемой системе, что могло бы существенно затруднить действия злоумышленника. Традиционные средства не позволяют также обнаружить уже совершенные атаки и оценить ущерб после их реализации (третий этап) и, следовательно, определить меры по предотвращению подобных атак в будущем.

В зависимости от искомого результата нарушитель концентрируется на том или ином этапе. Например, для отказа в обслуживании он в первую очередь подробно анализирует атакуемую сеть и выискивает в ней лазейки и слабые места для атаки на них и выведения узлов сети из строя. Для хищения информации злоумышленник основное внимание уделяет незаметному проникновению на анализируемые узлы при помощи обнаруженных ранее уязвимостей.

Рассмотрим основные механизмы реализации атак. Это необходимо, чтобы разобраться в методах обнаружения этих атак. Кроме того, понимание принципов действий злоумышленников -- залог успешной обороны вашей сети.

Сбор информации

Первый этап реализации атак -- это сбор информации об атакуемых системе или узле, т. е. определение сетевой топологии, типа и версии операционной системы атакуемого узла, а также доступных сетевых и иных сервисов и т. п. Эти действия реализуются различными методами.

Изучение окружения. На этом этапе нападающий исследует сетевое окружение предполагаемой цели атаки, например узлы интернет-провайдера атакуемой компании или узлы ее удаленного офиса. Злоумышленник может пытаться определить адреса "доверенных" систем (скажем, сеть партнера) и узлов, которые напрямую соединены с целью атаки (например, маршрутизатор ISP) и т. д. Такие действия трудно обнаружить, поскольку они выполняются в течение довольно длительного времени, причем снаружи области, контролируемой средствами защиты (межсетевыми экранами, системами обнаружения атак и т. п.).

Идентификация топологии сети. Можно назвать два метода определения топологии сети (network topology detection), применяемых злоумышленниками: изменение TTL (TTL modulation) и запись маршрута (record route). Программы traceroute для Unix и tracert для Windows используют первый способ определения топологии сети. Они используют для этого поле Time to Live ("время жизни") в заголовке IP-пакета, которое изменяется в зависимости от числа пройденных сетевым пакетом маршрутизаторов. Утилита ping подходит для записи маршрута ICMP-пакета. Зачастую сетевую топологию можно выяснить при помощи протокола SNMP, установленного на многих сетевых устройствах, защита которых неверно сконфигурирована. При помощи протокола RIP можно попытаться получить информацию о таблице маршрутизации в сети и т. д.

Множество атак безгранично.

Многие из этих методов используются современными системами управления (например, HP OpenView, Cabletron SPECTRUM, MS Visio и др.) для построения карт сети. И эти же методы могут быть с успехом применены злоумышленниками для построения карты атакуемой сети.

Идентификация узлов. Идентификация узла (host detection), как правило, осуществляется путем посылки при помощи утилиты ping команды ECHO_REQUEST протокола ICMP. Ответное сообщение ECHO_REPLY говорит о том, что узел доступен. Существуют свободно распространяемые программы, которые автоматизируют и ускоряют процесс параллельной идентификации большого числа узлов, например, fping или nmap. Опасность данного метода в том, что стандартными средствами узла запросы ECHO_REQUEST не фиксируются. Для этого необходимы средства анализа трафика, межсетевые экраны или системы обнаружения атак.

Это самый простой метод идентификации узлов, но он имеет ряд недостатков. Во-первых, многие сетевые устройства и программы блокируют ICMP-пакеты и не пропускают их во внутреннюю сеть (или, наоборот, не пропускают их наружу). Например, MS Proxy Server 2.0 не разрешает прохождение пакетов по протоколу ICMP. В результате не получается полной картины. С другой стороны, блокировка ICMP-пакета говорит злоумышленнику о наличии "первой линии обороны" -- маршрутизаторов, межсетевых экранов и т. д. Во-вторых, использование ICMP-запросов позволяет с легкостью обнаружить их источник, в чем, разумеется, злоумышленник вовсе не заинтересован.


Существует еще один метод определения узлов сети -- использование "смешанного" ("promiscuous") режима сетевой карты, который позволяет определить различные узлы в сегменте сети. Но он неприменим в тех случаях, когда трафик сегмента сети недоступен нападающему со своего узла, т. е. этот метод годится только для локальных сетей. Другим способом идентификации узлов сети является так называемая разведка DNS, позволяющая идентифицировать узлы корпоративной сети при помощи обращения к серверу службы имен.

Идентификация сервисов и сканирование портов. Идентификация сервисов (service detection), как правило, осуществляется путем обнаружения открытых портов (port scanning). Такие порты очень часто связаны с сервисами, основанными на протоколах TCP или UDP. Например, открытый 80-й порт подразумевает наличие Web-сервера, 25-й порт -- почтового SMTP-сервера, 31 337-й -- серверной части "троянского коня" BackOrifice, 12 345-й или 12 346-й - серверной части "троянского коня" NetBus и т. д. Для идентификации сервисов и сканирования портов могут быть использованы различные программы, в том числе и свободно распространяемые, например nmap или netcat.

Идентификация операционной системы. Основной механизм удаленного определения ОС (OS detection) -- анализ ответов на запросы, учитывающие различные реализации TCP/IP-стека в различных операционных системах. Стек протоколов TCP/IP в каждой ОС реализован по-своему, что позволяет при помощи специальных запросов и ответов на них определить, какая ОС установлена на удаленном узле.

Другой, менее эффективный и крайне ограниченный, способ идентификации ОС узлов -- анализ сетевых сервисов, обнаруженных на предыдущем этапе. Например, открытый 139-й порт позволяет сделать вывод, что удаленный узел, вероятнее всего, работает под управлением ОС семейства Windows. Для определения ОС могут быть использованы различные программы, например nmap или queso.

Определение роли узла. Предпоследним шагом на этапе сбора информации об атакующем узле является определение его роли, скажем, в выполнении функций межсетевого экрана или Web-сервера. Делается этот шаг на основе уже собранной информации об активных сервисах, именах узлов, топологии сети и т. п. Допустим, открытый 80-й порт может указывать на наличие Web-сервера, блокировка ICMP-пакета -- на потенциальное наличие межсетевого экрана, а DNS-имя узла proxy.domain.ru или fw.domain.ru говорит само за себя.

Определение уязвимостей узла. Последний шаг -- поиск уязвимостей (searching vulnerabilities). Злоумышленник при помощи различных автоматизированных средств или вручную определяет уязвимости, которые могут быть использованы для реализации атаки. В качестве таких автоматизированных средств могут быть использованы ShadowSecurityScanner, nmap, Retina и т. д.

Реализация атаки

После всего вышеперечисленного предпринимается попытка получить доступ к атакуемому узлу, причем как непосредственный (проникновение на узел), так и опосредованный, например, при реализации атаки типа "отказ в обслуживании". Реализация атаки в случае непосредственного доступа также может быть разделена на два этапа: проникновение и установление контроля.


Проникновение подразумевает преодоление средств защиты периметра (межсетевого экрана) различными путями -- использованием уязвимости сервиса компьютера, "смотрящего" наружу, или передачей враждебной информации по электронной почте (макровирусы) или через апплеты Java. Такая информация может быть передана через так называемые туннели в межсетевом экране (не путать с туннелями VPN), через которые затем и проникает злоумышленник. К этому же этапу можно отнести подбор пароля администратора или иного пользователя при помощи специализированной утилиты (L0phtCrack или Crack).

Установление контроля. После проникновения злоумышленник устанавливает контроль над атакуемым узлом. Это возможно путем внедрения программы типа "троянский конь" (NetBus или BackOrifice). После установки контроля над нужным узлом и "заметания следов" злоумышленник может осуществлять все необходимые несанкционированные действия дистанционно без ведома владельца атакованного компьютера. При этом установление контроля над узлом корпоративной сети должно сохраняться и после перезагрузки операционной системы - с помощью замены одного из загрузочных файлов или вставки ссылки на враждебный код в файлы автозагрузки или системный реестр. Известен случай, когда злоумышленник сумел перепрограммировать EEPROM сетевой карты и даже после переустановки ОС повторно реализовал несанкционированные действия. Более простой модификацией этого примера является внедрение необходимого кода или фрагмента в сценарий сетевой загрузки (скажем, для ОС Novell NetWare).


Цели реализации атак. Необходимо отметить, что злоумышленник на втором этапе может преследовать две цели. Во-первых, получение несанкционированного доступа к самому узлу и содержащейся на нем информации. Во-вторых, получение несанкционированного доступа к узлу для осуществления дальнейших атак на другие узлы. Первая цель, как правило, осуществляется только после реализации второй. То есть сначала злоумышленник создает себе базу для дальнейших атак и только после этого проникает на другие узлы. Это необходимо для того, чтобы скрыть или существенно затруднить нахождение источника атаки.

Завершение атаки

Завершающим этапом атаки является "заметание следов". Обычно злоумышленник реализует это путем удаления соответствующих записей из журналов регистрации узла и других действий, возвращающих атакованную систему в исходное, "предатакованное" состояние.

Классификация атак

Существуют различные типа классификации атак. Например, деление на пассивные и активные, внешние и внутренние атаки, умышленные и неумышленные. Однако, дабы не запутать читателя большим разнообразием классификаций, мало применимыми на практике, хотелось бы предложить более "жизненную" классификацию:

  • Удаленное проникновение (remote penetration). Атаки, которые позволяют реализовать удаленное управление компьютером через сеть. Примером такой программы является NetBus или BackOrifice.
  • Локальное проникновение (local penetration). Атака, приводящая к получению несанкционированного доступа к узлу, на котором она запущена, например программа GetAdmin.
  • Удаленный отказ в обслуживании (remote denial of service). Атаки, позволяющие нарушить функционирование или перегрузить компьютер через интернет (Teardrop или trin00).
  • Локальный отказ в обслуживании (local denial of service). Атаки, которые позволяют нарушить функционирование или перегрузить атакуемый компьютер. Примером такой атаки является "враждебный" апплет, загружающий центральный процессор бесконечным циклом, что приводит к невозможности обработки запросов других приложений.
  • Сетевые сканеры (network scanners). Программы, которые анализируют топологию сети и обнаруживают сервисы, доступные для атаки, например система nmap.
  • Сканеры уязвимостей (vulnerability scanners). Программы, которые ищут уязвимости на узлах сети и могут быть использованы для реализации атак. К таким сканерам можно отнести систему SATAN или ShadowSecurityScanner.
  • Взломщики паролей (password crackers). Программы, которые "подбирают" пароли пользователей. Пример взломщика паролей -- L0phtCrack для Windows или Crack для Unix.
  • Анализаторы протоколов (sniffers). Программы, которые "прослушивают" сетевой трафик. С их помощью можно автоматически искать такую информацию, как идентификаторы и пароли пользователей, информацию о кредитных картах и т. д. Из таких анализаторов протоколов стоит упомянуть Microsoft Network Monitor, NetXRay компании Network Associates или LanExplorer.
  • Интернет-компания Security Systems сократила число возможных категорий до пяти:

  • сбор информации (Information gathering);
  • попытки несанкционированного доступа (Unauthorized access attempts);
  • отказ в обслуживании (Denial of service);
  • подозрительная активность (Suspicious activity);
  • системные атаки (System attack).
  • Первые четыре категории относятся к удаленным атакам, а последняя - к локальным, реализуемом на атакуемом узле. Можно заметить, что в данную классификацию не попал целый класс так называемых "пассивных" атак. Помимо "прослушивания" трафика, в эту категорию также попадают такие атаки, как "ложный DNS-сервер", "подмена ARP-сервера" и т. п.

    Классификация атак, реализованная во многих системах обнаружения атак, не может быть категоричной. Например, атака, реализация которой для ОС Unix (например, переполнение буфера statd) чревата самыми плачевными последствиями (самый высокий приоритет), для ОС Windows NT может оказаться вообще неприменимой или иметь очень низкую степень риска..

    Заключение

    Не будь уязвимостей в компонентах информационных систем, нельзя было бы реализовать многие атаки и, следовательно, традиционные системы защиты вполне эффективно справлялись бы с возможными атаками. Но программы пишутся людьми, которым свойственно делать ошибки. Вследствие этого и появляются уязвимости, используемые злоумышленниками для реализации атак. Однако это только полбеды. Если бы все атаки строились по модели "один к одному", то с некоторой натяжкой, но межсетевые экраны и другие защитные системы смогли бы противостоять и им. Но… появились скоординированные атаки, против которых традиционные средства уже не так эффективны. Тут-то на сцене и появляются новые технологии обнаружения атак, но о них -- в следующей статье.

    Базы данных по атакам

    В 1999 году компания MITRE Corporation (http://cve.mitre.org) предложила подход к классификации атак, который впоследствии был реализован в базе данных Common Vulnerabilities and Exposures(CVE). Несмотря на столь привлекательную инициативу, база данных CVE в момент создания не получила широкого распространения среди производителей коммерческих продуктов. Однако в начале 2000 года свою базу данных уязвимостей, используемую в системах анализа защищенности интернет Scanner и System Scanner, в соответствие с CVE привела компания Internet Security Systems (ISS). Она первой начала ссылаться на унифицированные коды CVE. Это дало толчок и всем остальным производителям. В июне 2000 года о своей поддержке CVE заявили компании Cisco, Axent, BindView, IBM и др.

    Компания ISS, которая является лидером в области разработки средств анализа защищенности и обнаружения атак, основана в 1994 году одним из организаторов CERT Кристофером Клаусом. В ISS существует научно-исследовательская группа X-Force, объединяющая экспертов в области обеспечения информационной безопасности. Эта группа не только постоянно отслеживает все публикуемые другими группами реагирования сообщения об обнаруженных уязвимостях, но и сама проводит тестирование программных и аппаратных средств. Результаты этих исследований помещаются в базу данных уязвимостей и угроз (ISS X-Force Threat and Vulnerability Database).

    Алексей Лукацкий - заместитель директора по маркетингу Научно-инженерного предприятия "Информзащита"
    Сетевой

    Последние несколько лет на рынке информационной безопасности остро встал вопрос защиты от автоматизированных направленных атак, однако в общем понимании направленная атака в первое время представлялась как результат продолжительной и профессиональной работы организованной группой киберпреступников с целью получения дорогостоящих критичных данных. В настоящее время на фоне развития технологий, популяризации open-source форумов (напр. Github, Reddit) и Darknet, предоставляющих исходные коды вредоносного ПО и пошагово описывающих действия по его модификации (для невозможности его детектирования сигнатурным анализом) и заражению хостов, реализация кибератак значительно упростилась. Для реализации успешной атаки, сопровождающейся пагубными последствиями для владельцев автоматизированных и информационных систем, достаточно неквалифицированного пользователя и энтузиазма в разборе предоставленного в сети Интернет / Darknet материала.

    Мотивом для осуществления подобной преступной деятельности является получение прибыли. Самым простым, и поэтому самым распространенным способом является заражение сетевых хостов вредоносным ПО типа Ransomware. За последние 2 года его популярность стремительно растет:

    • за 2016 год количество известных типов (семейств) троянов-вымогателей увеличилось на 752%: с 29 типов в 2015 году до 247 к концу 2016 года (по данным TrendLabs);
    • благодаря вирусам-вымогателям злоумышленники за 2016 год «заработали» 1 миллиард долларов США (по данным CSO);
    • в 1 квартале 2017 года появилось 11 новых семейств троянов-вымогателей и 55 679 модификаций. Для сравнения, во 2-4 кварталах 2016 года появилось 70 837 модификаций (по данным Kaspersky Lab).
    В начале 2017 года ведущие производители средств защиты информации (Kaspersky Lab, McAfee Labs, SophosLabs, Malwarebytes Labs, TrendMicro и др.) называли Ransomware одной из основных угроз безопасности информации для государственных и коммерческих организаций различных сфер деятельности и масштабов. И как показывает история, они не ошиблись:
    • Январь 2017 г. Заражение 70% камер видеонаблюдения за общественным порядком в Вашингтоне накануне инаугурации президента. Для устранения последствий камеры были демонтированы, перепрошиты или заменены на другие;
    • Февраль 2017 г. Вывод из строя всех муниципальных служб округа Огайо (США) более чем на одну неделю из-за массового шифрования данных на серверах и рабочих станциях пользователей (свыше 1000 хостов);
    • Март 2017 г. Вывод из строя систем Капитолия штата Пенсильвания (США) из-за атаки и блокировки доступа к данным информационных систем;
    • Май 2017 г. Крупномасштабная атака вируса-шифровальщика WannaCry (WanaCrypt0r 2.0), поразившая на 26.06.2017 более 546 тысяч компьютеров и серверов на базе операционных систем семейства Windows в более чем 150 странах. В России были заражены компьютеры и серверы таких крупных компаний, как Минздрав, МЧС, РЖД, МВД, «Мегафон», «Сбербанк», «Банк России». Универсального дешифратора данных до сих пор не существует (были опубликованы способы расшифровать данные на Windows XP). Общий ущерб от вируса по оценкам экспертов превышает 1 млрд долларов США;
    • Крупномасштабная атака вируса-шифровальщика XData в мае 2017 года (через неделю после начала атаки WannaCry), использующая для заражения аналогичную WannaCry уязвимость (EternalBlue) в протоколе SMBv1 и поразившая в основном корпоративный сегмент Украины (96% зараженных компьютеров и серверов находятся на территории Украины), скорость распространения которого превышает WannaCry в 4 раза. В настоящий момент ключ шифрования опубликован, выпущены дешифраторы для жертв вымогателя;
    • Июнь 2017 г. Обширной атаке Ransomware была подвержена сеть одного из крупнейших университетов мира – Univercity College London. Атака была направлена на блокирование доступа к общим сетевым хранилищам, автоматизированную систему студенческого управления. Выполнено это было в предэкзаменационный и выпускной период, когда студенты, хранящие свои дипломные работы на файловых серверах университета, вероятнее всего заплатят мошенникам с целью получения своей работы. Объем зашифрованных данных и пострадавших не раскрывается.
    Случаев направленных атак с целью заражения Ransomware очень много. Основной целью злоумышленников являются системы на базе ОС семейства Windows, однако существуют различные версии Ransomware для ОС семейств UNIX/Linux, MacOS, а также мобильных платформ iOS и Android.

    С развитием Ransomware появляются и средства противодействия им. В первую очередь это открытый проект No more Ransom! (www.nomoreransom.org), предоставляющий жертвам атак средства дешифрования данных (в случае вскрытия ключа шифрования), во вторую – специализированные open-source средства защиты от вирусов-шифровальщиков. Но и они либо анализируют поведение ПО по сигнатурам и не способны обнаружить неизвестный вирус, либо обеспечивают блокировку вредоносного ПО после его воздействия на систему (шифрования части данных). Специализированные Open-source решения применимы интернет-пользователями на личных / домашних устройствах, крупным организациям, обрабатывающим большие объемы информации, в том числе критичной, необходимо обеспечивать комплексную проактивную защиту от направленных атак.

    Проактивная защита от направленных атак и Ransomware

    Рассмотрим возможные векторы доступа к защищаемой информации, находящейся на сервере или автоматизированном рабочем месте пользователя:
    • Воздействие на периметр локальной вычислительной сети из интернета возможно через:
    • корпоративную электронную почту;
    • веб-трафик, в том числе веб-почту;
    • периметровый маршрутизатор / межсетевой экран;
    • сторонние (некорпоративные) шлюзы доступа к интернету (модемы, смартфоны и т. д.);
    • системы защищенного удаленного доступа.
    • Воздействие на серверы, рабочие места пользователей по сети:
    • загрузка вредоносных программ на конечные точки / серверы по запросу от них же;
    • использование недокументированных возможностей (уязвимостей) системного/прикладного ПО;
    • загрузка вредоносов по шифрованному VPN-каналу, неконтролируемому службами ИТ и ИБ;
    • подключение к локальной сети нелегитимных устройств.
    • Прямое воздействие на информацию на серверах, рабочих местах пользователей:
    • подключение внешних носителей информации с вредоносом;
    • разработка вредоносных программ прямо на конечной точке / сервере.
    Для уменьшения вероятности реализации угрозы для каждого типа доступа к защищаемой информации необходимо обеспечивать выполнение комплекса организационно-технических мер по защите информации, перечень которых отражен на рисунке (см. Рисунок 1)

    Рисунок 1. Проактивные меры защиты от направленных атак и Ransomware

    Организационные меры защиты от направленных атак и Ransomware

    К основным организационным мерам проактивной защиты от направленных атак и Ransomware относятся:
    • Повышение осведомленности сотрудников в области ИБ.
      Необходимо регулярно проводить обучение сотрудников и информировать их о возможных угрозах ИБ. Минимальной и необходимой мерой является формирование принципов работы с файлами и почтой:
      o не открывать файлы с двойным расширением: настроить для пользователей отображение расширений, чтобы идентифицировать вредоносные файлы с двойными расширениями (например, 1СRecord.xlsx.scr);
      o не включать макросы в недоверенных документах Microsoft Office;
      o проверять адреса отправителей почтовых сообщений;
      o не открывать ссылки на веб-страницы, почтовые вложения от неизвестных отправителей.
    • Оценка эффективности защиты как внутри организации, так и с привлечением внешних специалистов.
      Оценивать эффективность обучения персонала необходимо при помощи моделирования атак, как внутренних, так и с участием внешних специалистов - проводить тесты на проникновение, в т. ч. с использованием метода социальной инженерии.
    • Регулярное обновление системного ПО (Patch Management).
      Для предотвращения атак вредоносного ПО на целевые системы через известные уязвимости необходимо обеспечить своевременное тестирование и установку обновлений системного и прикладного ПО с учетом приоритизации по степени критичности обновлений.
    • Систематизация резервного копирования данных.
      Необходимо регулярно выполнять резервное копирование критически важных данных серверов информационных систем, систем хранения данных, рабочих мест пользователей (если предполагается хранение критичной информации). Резервные копии должны храниться на ленточных библиотеках системы хранения данных, на отчуждаемых носителях информации (при условии, что носитель информации не подключен постоянно к рабочей станции или серверу), а также в облачных системах резервирования данных, хранилищах.

    Технические меры защиты от направленных атак и Ransomware

    Технические мероприятия проактивной защиты от направленных атак и Ransomware предпринимаются на уровне сети и на уровне хоста.

    Меры проактивной защиты на уровне сети

    • Использование систем фильтрации электронной почты , обеспечивающих анализ почтового трафика на наличие нежелательных писем (spam), ссылок, вложений, в том числе вредоносных (например, блокировка файлов JavaScript (JS) и Visual Basic (VBS), исполняемые файлы (.exe), файлы заставки (SCR), Android Package (.apk) и файлы ярлыков Windows (.lnk)).
    • Использование систем контентной фильтрации веб-трафика , обеспечивающих разграничение и контроль доступа пользователей к интернету (в т.ч. путем разбора SSL-трафика с помощью подмены сертификата сервера), потоковый анализ трафика на наличие вредоносных программ, разграничение доступа пользователей к содержимому веб-страниц.
    • Использование систем защиты от целенаправленных атак , атак нулевого дня (Sandbox, песочница), обеспечивающих эвристический и поведенческий анализ потенциально опасных файлов в изолированной среде перед отправкой файла в защищаемые информационные системы. Системы защиты от направленных атак должны быть интегрированы с системами контентной фильтрации веб-трафика, фильтрации электронной почты для блокирования вредоносных вложений. Также системы защиты от направленных атак интегрируют с информационными системами внутри периметра сети для обнаружения и блокировки сложных атак на критичные ресурсы, сервисы.
    • Обеспечение контроля доступа к корпоративной сети на уровне проводной и беспроводной сети с помощью технологии 802.1x. Такая мера исключает несанкционированное подключение нелегитимных устройств в корпоративную сеть, обеспечивает возможность выполнения проверки на соответствие корпоративным политикам при доступе в сеть организации (наличие антивирусного ПО, актуальные сигнатурные базы, наличие критических обновлений Windows). Контроль доступа к корпоративной сети с помощью 802.1x обеспечивается системами класса NAC (Network Access Control).
    • Исключение прямого взаимодействия внешних пользователей с ресурсами корпоративных информационных систем с помощью промежуточных шлюзов доступа с наложенными корпоративными средствами защиты информации (терминальный сервер, система виртуализации рабочих столов VDI), в том числе с возможностью фиксации действий внешних пользователей с помощью видео или текстовой записи сессии. Мера реализуется с помощью систем терминального доступа, систем класса PUM (Privileged User Management).
    • Сегментирование сети по принципу необходимой достаточности для исключения избыточных разрешений сетевого взаимодействия, ограничения возможности распространения вредоносных программ в корпоративной сети в случае заражения одного из серверов / рабочих мест пользователей / виртуальных машин. Возможна реализация такой меры с помощью систем анализа политик межсетевого экранирования (NCM / NCCM, Network Configuration (Change) Management), обеспечивающих централизованный сбор политик межсетевого экранирования, настроек межсетевых экранов и дальнейшую их обработку с целью автоматизированной выдачи рекомендаций по их оптимизации, контроль изменений политик межсетевого экранирования.
    • Выявление аномалий на уровне сетевых взаимодействий с помощью специализированных решений класса NBA & NBAD (Network Behavior Analysis, Network Behavior Anomaly Detection), позволяющих осуществить сбор и анализ сведений о потоках данных, профилирование трафика для каждого сетевого хоста для выявления отклонений от «нормального» профиля. Данный класс решений позволит выявить:

      O сканирование зараженным хостом своего окружения;
      o вектор заражения;
      o состояние хоста:«просканирован», «заражен и сканирует других»;
      o однонаправленные потоки;
      o аномальные потоки;
      o вирусные эпидемии;
      o распределенные атаки;
      o картину существующих потоков.

    • Отключение зараженных хостов (автоматизированных рабочих мест, серверов, виртуальных машин и пр.) от сети. Эта мера применима в случае заражения хотя бы одного из хостов в корпоративной сети, однако необходима для локализации и предотвращения вирусной эпидемии. Рабочие места от сети можно отключить как силами администрирующего персонала ИТ и ИБ, так и автоматизировано при обнаружении признаков угрозы на защищаемом хосте (путем корреляции событий безопасности, настройки автоматизированных действий по блокировки всех сетевых активностей на хосте / отключению хоста от сети на уровне коммутатора и пр.).

    Меры проактивной защиты на уровне хоста

    • Обеспечение защиты от несанкционированного доступа рабочих мест, серверов, виртуальных машин путем усиленной аутентификации пользователей, контроля целостности операционной системы, блокировки загрузки системы с внешних носителей для исключения заражения корпоративной сети нарушителями внутри периметра сети. Эта мера реализуется решениями класса СЗИ от НСД / Endpoint Protection.
    • Обеспечение антивирусной защиты на всех сетевых узлах организации. Антивирусное ПО должно обнаруживать факты вирусного заражения оперативной памяти, локальных носителей информации, томов, каталогов, файлов, а также файлов, получаемых по каналам связи, электронных сообщений на рабочих местах, серверах, виртуальных машинах в реальном времени, лечить, удалять или изолировать угрозы. Сигнатурные базы антивирусного ПО должны регулярно обновляться и находиться в актуальном состоянии.
    • Обеспечение мониторинга и контроля действий ПО на защищаемых хостах путем контроля запускаемых служб и сервисов, эвристического анализа их функционирования. Такая мера реализуется решениями класса HIPS (Host Intrusion Prevention).
    • Обеспечение контроля подключения внешних устройств , блокировки неиспользуемых портов на защищаемых хостах для исключения подключения к защищаемым хостам несанкционированных устройств: как носителей информации с потенциально вредоносными программами, так и внешних шлюзов доступа к интернету (например, 4G-модем), обеспечивающих неконтролируемый и незащищенный канал доступа в интернет. Эта мера реализуется решениями класса СЗИ от НСД / Endpoint Protection.
    • Обеспечение продвинутой защиты хостов с помощью поведенческого анализа функционирования процессов на защищаемых хостах, машинного обучения, эвристического анализа файлов, контроля приложений, защиты от эксплойтов для выявления и блокировки неизвестных угроз (угроз нулевого дня) в режиме реального времени. Данная мера реализуется решениями класса NGEPP (Next Generation Endpoint Protection).
    • Использование агентских решений по защите от вымогателей , шифрующих данные на зараженном хосте. К ним относятся:
      o Продуктивные системы защиты от направленных атак, атак нулевого дня с клиент-серверной архитектурой. Клиентское ПО устанавливается на защищаемый хост, защищает в реальном времени от угроз нулевого дня, вирусов, шифрующих данные в системе, расшифровывает зашифрованные вредоносом данные (в случае наличия агента - до попытки заражения), удаляет троян-вымогатель, защищает от фишинговых атак. Клиентское ПО обеспечивает контроль всех каналов доступа к хосту: веб-трафик, отчуждаемые носители информации, электронная почта, доступ по локальной сети, вредоносные программы в зашифрованном трафике (VPN).
      o Клиентские системы защиты от угроз нулевого дня (песочницы) в открытом доступе (sandboxie, cuckoo sandbox, shadow defender и др.).
      o Клиентские системы защиты от угроз нулевого дня на базе микровиртуализации (Bromium vSentry), обеспечивающие поведенческий анализ потенциально вредоносных файлов в аппаратно изолированной среде (микровиртуальной инфраструктуре).
    • Обеспечение межсетевого экранирования на уровне хоста с помощью программных межсетевых экранов для разграничения доступа к ресурсам корпоративной сети, ограничения распространения вредоноса в случае заражения хоста, блокировки неиспользуемых сетевых портов, протоколов.

    Другие меры защиты от вирусов-вымогателей

    Дополнительно к вышеперечисленным мерам предотвратить направленную атаку в корпоративной сети поможет следующее:
    • Обеспечение регулярного анализа защищенности ИТ-инфраструктуры - сканирование узлов сети для поиска известных уязвимостей в системном и прикладном ПО. Эта мера обеспечивает своевременное обнаружение уязвимостей, позволяет их устранить до момента их использования злоумышленниками. Также система анализа защищенности решает задачи по контролю сетевых устройств и устройств, подключенных к рабочим станциям пользователей (например, 4G-модем).
    • Сбор и корреляция событий позволяет комплексно подойти к обнаружению вымогателей в сети на основе SIEM-систем, поскольку такой метод обеспечивает целостную картину ИТ-инфраструктуры компании. Эффективность SIEM заключается в обработке событий, которые отправляются с различных компонентов инфраструктуры, в том числе ИБ, на основе правил корреляции, что позволяет оперативно выявить потенциальные инциденты, связанные с распространением вируса-вымогателя.

    Приоритезация мер защиты от вирусов-вымогателей

    Надежная комплексная защита от направленных атак обеспечивается комплексом организационно-технических мер, которые ранжируются в следующие группы:
    • Базовый набор мер, необходимый для применения всем организациям для защиты от направленных атак и вредоносов-вымогателей.
    • Расширенный набор мер, применимый для средних и крупных организаций с высокой стоимостью обработки информации.
    • Продвинутый набор мер, применимый для средних и крупных организаций с продвинутой ИТ- и ИБ-инфраструктурой и высокой стоимостью обрабатываемой информации.


    Рисунок 2. Приоритизация мер защиты от трояна-вымогателя

    Меры защиты от Ransomware для конечных пользователей

    Угроза заражения вирусом-вымогателем актуальна и для конечных пользователей Интернет, для которых также применимы отдельные меры по предотвращению заражения:
    • своевременная установка обновлений системного ПО;
    • использование антивирусов;
    • своевременное обновление баз сигнатур антивирусов;
    • использование доступных в свободном доступе средств защиты от вредоносных программ, шифрующих данные на компьютере: RansomFree, CryptoDrop, AntiRansomware tool for business, Cryptostalker и др. Установка средств защиты данного класса применима, если на компьютере хранятся критичные незарезервированные данные и не установлены надежные средства антивирусной защиты.

    Уязвимость мобильных устройств (Android, iOS)

    «Умные» мобильные устройства (смартфоны, планшетные компьютеры) стали неотъемлемой частью жизни: с каждым годом увеличивается количество активированных мобильных устройств, мобильных приложений и объем мобильного трафика. Если раньше мобильные телефоны хранили только базу контактов, то сейчас они являются хранилищами критичных данных для пользователя: фото, видео, календари, документы и пр. Мобильные устройства все активнее используются и в корпоративном секторе (ежегодный прирост 20-30%). А потому растет интерес злоумышленников и к мобильным платформам, в частности, с точки зрения вымогания денег с помощью троянов. По данным Kaspersky Lab, в 1 квартале 2017 года вымогатели занимают 16% от общего числа вредоносов (в 4 квартале 2016 года это значение не превышало 5%). Наибольший процент троянов для мобильных платформ написан для самой популярной мобильной операционной системы - Android, но для iOS также существуют подобные.

    Меры защиты для мобильных устройств:

    • Для корпоративного сектора:
      o использование систем класса Mobile Device Management (MDM), обеспечивающих контроль установки обновлений системного ПО, установки приложений, контроль наличия прав суперпользователя;
      o для защиты корпоративных данных на мобильных устройствах пользователя - системы класса Mobile Information Management (MIM), обеспечивающих хранение корпоративных данных в зашифрованном контейнере, изолированном от операционной системы мобильного устройства;
      o использование систем класса Mobile Threat Prevention, обеспечивающих контроль разрешений, предоставленных приложениям, поведенческий анализ мобильных приложений.
    • Для конечных пользователей:
      o использование официальных магазинов для установки приложений;
      o своевременное обновление системного ПО;
      o исключение перехода по недоверенным ресурсам, установки недоверенных приложений и сервисов.

    Выводы

    Простота реализации и низкая стоимость затрат организации кибератак (Ransomware, DDoS, атаки на веб-приложения и пр.) приводит к увеличению числа киберпреступников при одновременном снижении среднего уровня технической осведомленности атакующего. В связи с этим резко увеличивается вероятность реализации угроз безопасности информации в корпоративном секторе и потребность в обеспечении комплексной защиты.

    Поэтому мы в компании «Информзащита» фокусируемся на современных вызовах информационной безопасности и обеспечиваем защиту инфраструктуры клиентов от новейших, в том числе неизвестных угроз. Создавая и реализуя комплексные адаптивные модели противодействия угрозам информационной безопасности, мы знаем, как прогнозировать, предотвращать, обнаруживать и реагировать на киберугрозы. Главное - делать это своевременно.

    Компьютерная атака

    "...Компьютерная атака: целенаправленное , на ресурс автоматизированной информационной системы или получение несанкционированного доступа к ним с применением программных или программно-аппаратных средств..."

    Источник:

    "ЗАЩИТА ИНФОРМАЦИИ. ОБЪЕКТ ИНФОРМАТИЗАЦИИ. ФАКТОРЫ, ВОЗДЕЙСТВУЮЩИЕ НА ИНФОРМАЦИЮ. ОБЩИЕ ПОЛОЖЕНИЯ. ГОСТ Р 51275-2006 "

    (утв. Приказом Ростехрегулирования от 27.12.2006 N 374-ст)


    Официальная терминология . Академик.ру . 2012 .

    Смотреть что такое "Компьютерная атака" в других словарях:

      компьютерная атака - Целенаправленное несанкционированное воздействие на информацию, на ресурс информационной системы или получение несанкционированного доступа к ним с применением программных или программно аппаратных средств. [Р 50.1.056 2005 ] Тематики защита… … Справочник технического переводчика

      компьютерная атака - 3.11 компьютерная атака: Целенаправленное несанкционированное воздействие на информацию, на ресурс автоматизированной информационной системы или получение несанкционированного доступа к ним с применением программных или программно аппаратных… …

      сетевая атака - 3.12 сетевая атака: Компьютерная атака с использованием протоколов межсетевого взаимодействия , . Источник: ГОСТ Р 51275 2006: Защита информации. Объект информатизации. Факторы, воздействующие на информацию. Общие положения … Словарь-справочник терминов нормативно-технической документации

      Сетевая атака: компьютерная атака с использованием протоколов межсетевого взаимодействия... Источник: ЗАЩИТА ИНФОРМАЦИИ. ОБЪЕКТ ИНФОРМАТИЗАЦИИ. ФАКТОРЫ, ВОЗДЕЙСТВУЮЩИЕ НА ИНФОРМАЦИЮ. ОБЩИЕ ПОЛОЖЕНИЯ. ГОСТ Р 51275 2006 (утв. Приказом… … Официальная терминология

      Чапаев (компьютерная игра) - Компьютерная игра Чапаев 3D «Чапаев», или «Чапаевцы» советская настольная игра, получившая название по фамилии героя Гражданской войны Василия Ивановича Чапаева. Эта игра родственна бильярду и особенно близка к таким играм, как карром, крокинол,… … Википедия

      StarCraft (компьютерная игра) - StarCraft Обложка оригинального компакт диска Разработчик Blizzard Entertainment Издатели Blizzard Entertainment, Sierra Entertainment, Soft Club Локализатор … Википедия

      Война и мир (компьютерная игра)

      Вторая корона (компьютерная игра) - Knights and Merchants: The Shattered Kingdom Разработчик Joymania Entertainment Издатель TopWare Interactive … Википедия

    Введение

    Системы обнаружения сетевых вторжений и выявления признаков компьютерных атак на информационные системы уже давно применяются как один из необходимых рубежей обороны информационных систем. Разработчиками систем защиты информации и консультантами в этой области активно применяются такие понятия (перенесенные из направления обеспечения физической и промышленной безопасности), как защита "по периметру", "стационарная" и "динамическая" защита, стали появляться собственные термины, например, "проактивные" средства защиты.

    Исследования в области обнаружения атак на компьютерные сети и системы на самом деле ведутся за рубежом уже больше четверти века. Исследуются признаки атак, разрабатываются и эксплуатируются методы и средства обнаружения попыток несанкционированного проникновения через системы защиты, как межсетевой, так и локальной — на логическом и даже на физическом уровнях. В действительности, сюда можно отнести даже исследования в области ПЭМИН , поскольку электромагнитный тамперинг имеет свои прямые аналоги в уже ставшей обычной для рядового компьютерного пользователя сетевой среде. На российском рынке широко представлены коммерческие системы обнаружения вторжений и атак (СОА) иностранных компаний (ISS RealSecure, NetPatrol, Snort, Cisco и т.д.) и в тоже время практически не представлены комплексные решения российских разработчиков. Это вызвано тем, что многие отечественные исследователи и разработчики реализуют СОА, сохраняя аналогии архитектур и типовых решений уже известных систем, не особенно стараясь увеличить эффективность превентивного обнаружения атак и реагирования на них. Конкурентные преимущества в этом сегменте российского рынка достигаются обычно за счет существенного снижения цены и упования на "поддержку отечественного производителя".

    Рисунок 2. Информационная пирамида

    Верхняя часть информационной пирамиды — это риски и угрозы, присущие рассматриваемой системе. Ниже располагаются различные варианты реализаций угроз (атаки), и самый нижний уровень — это признаки атак. Конечный пользователь, равно как и система обнаружения атак, имеет возможность регистрировать только процесс развития конкретной атаки или свершившийся факт атаки по наблюдаемым характерным признакам. Признаки атаки — то, что мы реально можем зафиксировать и обработать различными техническими средствами, а следовательно, необходимы средства фиксации признаков атак.

    Если данный процесс рассматривать во времени, то можно говорить, что определенные последовательности наблюдаемых признаков порождают события безопасности. События безопасности могут переводить защищаемые объекты информационной системы в небезопасное состояние. Следовательно, для системы обнаружения атак необходим информационный срез достаточной полноты, содержащий все события безопасности, произошедшие в информационной системе за рассматриваемый период. Кроме того, поднимаясь вверх по пирамиде, для события безопасности можно указать, к реализации какого вида угроз оно может привести, для того чтобы в процессе развития атаки производить прогнозирование ее развития и принимать меры по противодействию угрозам, которые может вызывать данная атака.

    Методология обработки данных в современных информационных системах подразумевает повсеместное использование многоуровневости. Для СОА нового типа можно выделить следующие крупные уровни, на которых возможно осуществление доступа к обрабатываемой информации:

    1. Уровень прикладного ПО , с которым работает конечный пользователь информационной системы. Прикладное программное обеспечение зачастую имеет уязвимости, которые могут использовать злоумышленники для доступа к обрабатываемым данным ПО.
    2. Уровень СУБД. Уровень СУБД является частным случаем средств прикладного уровня, но должен выделяться в отдельный класс в силу своей специфики. СУБД, как правило, имеет свою собственную систему политик безопасности и организации доступа пользователей, которую нельзя не учитывать при организации защиты.
    3. Уровень операционной системы. Операционная система компьютеров защищаемой ИС является важным звеном защиты, поскольку любое прикладное ПО использует средства, предоставляемые именно ОС. Бесполезно совершенствовать качество и надежность прикладного ПО, если оно эксплуатируется на незащищенной ОС.
    4. Уровень среды передачи. Современные ИС подразумевают использование различных сред передачи данных для взаимосвязи аппаратных компонентов, входящих в состав ИС. Среды передачи данных являются на сегодня одними из самых незащищенных компонентов ИС. Контроль среды передачи и передаваемых данных является одной из обязательных составляющих механизмов защиты данных.

    Иллюстративно уровни обработки потоков данных в информационной системе представлены на .

    Рисунок 3. Уровни обработки информации в информационной системе

    Исходя из вышесказанного, можно сделать вывод, что любые средства защиты информации, в том числе и системы обнаружения и предупреждения атак, обязаны иметь возможность анализировать обрабатываемые и передаваемые данные на каждом из выделенных уровней. Требование присутствия системы обнаружения атак на каждом функциональном уровне информационной системы приводит к необходимости выделения подсистемы регистрации событий безопасности в отдельный комплекс информационных зондов СОА, обеспечивающих сбор информации в рамках всей сети информационной системы. В то же время, разнородность программно-аппаратных платформ и задач, решаемых различными объектами ИС, требует применения модульной архитектуры информационных зондов для обеспечения возможности максимальной адаптации к конкретным условиям применения.

    Использование знаний об угрозах ИБ для обнаружения атак на информационную систему

    Угрозы информационной безопасности, как правило, каким-либо образом взаимосвязаны друг с другом. Например, угроза захвата уязвимого веб-сервера узла сети может привести к реализации угрозы полного захвата управления данным узлом, поэтому в целях прогнозирования и оценки ситуации целесообразно учитывать вероятностную взаимосвязь угроз.

    Если рассмотреть U — множество угроз безопасности рассматриваемой информационной системы, то u i О U — i-я угроза. В предположении, что множество угроз конечно, будем считать, что реализация i-ой угрозы может с некоторой вероятностью приводить к возможности реализации других угроз. При этом возникает задача вычисления P(u|u i1 ,u i2 ,...,u ik) — вероятности реализации угрозы u, при условии реализации угроз u i1 ,u i2 ,...,u ik (см. ).

    Рисунок 4. Вид графа зависимости угроз ИБ

    Наиболее надежно атаку можно обнаружить, имея как можно более полную информацию о произошедшем событии. Как видно из предыдущих разделов, современные системы чаще всего фиксируют атаки по наличию определенной, вполне конкретной сигнатуры.

    Расширив этот подход, мы можем акцентировать внимание на процесс выделения в компьютерных атаках различных этапов (фаз) их реализации. Выделение фаз атак, особенно ранних, является важным процессом, который, в конечном счете, позволяет обнаружить атаку в процессе ее развития. Однако сделать это возможно лишь определив соответствующим образом перечень угроз информационной системе, которые могут реализовываться на каждой из фаз атаки, и соответствующим образом отразив данный факт в классификации. В самом крупном приближении выделяются три основных фазы атаки: сетевая разведка, реализация, закрепление и сокрытие следов.

    Анализ взаимосвязи угроз с фазами атаки и прогнозирования наиболее вероятных угроз, которые могут быть реализованы злоумышленником, является важной задачей обеспечения ИБ. Это необходимо для своевременного принятия решений по блокировке злонамеренных воздействий.

    Следующим элементом концепции обнаружения атак является классификация. Вопросы классификации компьютерных атак до сих пор активно исследуются. Основная задача разработки классификации компьютерных атак состоит в том, чтобы обеспечить удобство использования данной классификации на практике. Основные требования к классификации таковы: непересекающиеся классы, полнота, применимость, объективность, расширяемость, конечность. Интересные подходы к классификации сетевых атак предложены в. Классификация угроз безопасности должна учитывать структуру и фазы проведения атаки на компьютерные системы, определять такие атрибуты как источники и цели атаки, их дополнительные характеристики, многоуровневую типизацию. Модель обнаружения вторжений должна строиться на базе разработанной классификации.

    Таким образом, в перспективе необходимо решение следующих задач — определение наиболее вероятной реализации угрозы на текущий момент времени для того, чтобы иметь представление, какие последствия могут в кратчайшее время ожидать информационную систему, а также составление прогноза развития ситуации с целью определения наиболее вероятной реализации угроз в будущем.

    Повышение эффективности систем обнаружения атак — интегральный подход

    Вообще говоря, современные системы обнаружения вторжений и атак еще далеки от эргономичных и эффективных, с точки зрения безопасности решений. Повышение же эффективности следует ввести не только в области обнаружения злонамеренных воздействий на инфраструктуру защищаемых объектов информатизации, но и с точки зрения повседневной "боевой" эксплуатации данных средств, а также экономии вычислительных и информационных ресурсов владельца данной системы защиты.

    Если же говорить непосредственно о модулях обработки данных, то, следуя логике предыдущего раздела, каждая сигнатура атаки в представленной схеме обработки информации об атаке является базовым элементом для распознавания более общих действий — распознавания фазы атаки (этапа ее реализации). Само понятие сигнатуры обобщается до некоторого решающего правила (например, с помощью поиска аномалий в сетевом трафике или клавиатурном почерке пользователя). А каждая атака наоборот разбивается на набор этапов ее проведения. Чем проще атака, тем проще ее обнаружить и больше возможностей появляется по ее анализу. Каждая сигнатура отображает определенное событие в вычислительной сетевой и локальной среде в фазовое пространство компьютерных атак. Фазы можно определить свободно, но лучше сохранять при этом достаточную степень детализации, чтобы иметь возможность описывать атаки с помощью подробных сценариев атак (списка фаз атак и переходов между ними).

    Сценарий атаки в этом случае представляет собой граф переходов, в аналогичный графу конечного детерминированного автомата. А фазы атак можно описать, например, следующим образом:

    • опробование портов;
    • идентификация программных и аппаратных средств;
    • сбор баннеров;
    • применение эксплоитов;
    • дезорганизация функционала сети с помощью атак на отказ в обслуживании;
    • управление через бэкдоры;
    • поиск установленных троянов;
    • поиск прокси-серверов;
    • удаление следов присутствия;
    • и т.д. (по необходимости с различной степенью детализации).

    Преимущества такого подхода очевидны — в случае раздельной обработки различных этапов атаки появляется возможность распознавать угрозу еще в процессе ее подготовки и формирования, а не на стадии ее реализации, как это происходит в существующих системах. При этом, элементной базой для распознавания может быть как сигнатурный поиск, так и выявление аномалий, использование экспертных методов и систем, доверительных отношений и прочих информационных, уже известных и реализованных, сетевых и локальных примитивов оценки происходящего в вычислительной среде потока событий.

    Обобщающий подход к анализу позволяет соответственно определять и распределенные (во всех смыслах) угрозы, как во временно"м, так и логическом и физическом пространстве. Общая схема обработки поступающих событий также позволяет осуществлять поиск распределенных атак — путем последующей агрегации данных из различных источников и конструирования мета-данных об известных инцидентах по защищаемому "периметру" (см. ).

    Рисунок 5. Схема интегрального обнаружения компьютерных атак

    Распределенные атаки выявляются путем агрегации данных о поступающих атаках и подозрительных действиях и сопоставления шаблонов и статистической фильтрации. Таким образом, оповещение о подозрительных действиях в компьютерных системах происходит на нескольких уровнях:

    • нижний уровень сообщает о примитивных событиях (совпадении сигнатур, выявлении аномалий);
    • средний уровень извлекает информацию из нижнего уровня и агрегирует ее с помощью конечных автоматов (сценариев атак), статистического анализа и механизмов пороговой фильтрации;
    • высший уровень агрегирует информацию с двух предыдущих и позволяет выявлять обычные и распределенные атаки, их реальный источник и прогнозировать его дальнейшее поведение на основе интеллектуального анализа.

    Ядро системы обнаружения компьютерных атак должно быть четко разделено с системой визуализации и сигнализации.

    Для поиска сигнатур в сетевых пакетах используются правила, формирующие перечень опций (паспорт), по которым осуществляется проверка поступающих сетевых пакетов. Существующие системы (как, например, Snort или PreludeIDS, которая использует правила Snort) применяют строчный вид описаний таких правил:

    Alert tcp $HOME_NET 1024:65535 ->
    $EXTERNAL_NET 1024:65535
    (msg:"BLEEDING-EDGE TROJAN Trojan.Win32.Qhost C&C Traffic Outbound (case1)";
    flow:established;
    dsize:>1000;
    content:"|00 00 00 28 0a 00 00 02 0f|Service Pack 1|00|";
    classtype:trojan-activity;
    reference: url,/www.viruslist.com/en/viruses/ encyclopedia?virusid=142254;
    sid:2007578;
    rev:1;
    )

    Такой вид более удобен для быстрой машинной обработки, но менее пригоден для человека. Кроме того, в нем отсутствуют возможности для расширения функциональности, которые заложены в XML-подобных реализациях сигнатурных баз. Например, простая "скобочная" (от англ. brace-like) конфигурация позволяет записать ряд управляющих переменных и описать правила в гораздо более приятной и понятной визуальной форме, сохраняя возможность для легкого расширения функциональности. Так, определение фаз атак, защищаемых объектов и совершаемых в сети событий может выглядеть следующим образом:

    Type_defs {
    alert = 1;
    warning = 2;
    fail = 4;
    }
    srcdst_defs {
    HOME_NET = 195.208.245.212
    localhost = 127.0.0.1
    }
    proto_defs {
    tcp = 1;
    udp = 2;
    tcp-flow = 10;
    }
    phase_defs {
    port_scanning = 1;
    exploiting = 2;
    icmp_sweeping = 3;
    ftp_bouncing = 4;
    shell_using = 5;
    dir_listing = 6;
    file_opening = 7;
    }

    А секция определения угроз информационной безопасности может иметь основные позиции, подобные следующей:

    Treat_defs = {
    treat {
    name = file-unauthorised-access;
    id = FUAC;
    msg = "message in english";
    }
    }

    Кроме указанных в гибкой форме угроз, фаз атак и защищаемых объектов, интегральная обработка информации, связанная с выявлением угроз информационной безопасности, позволяет ввести также сервис-ориентированный подход к обнаружению атак, формируя автоматическим или ручным способом описания сетевых и локальных служб, а также приоритезируя важность, с точки зрения обеспечения должного уровня, информационной безопасности и жизнедеятельности информационной инфраструктуры сети.

    Service_defs = {
    service {
    name = pop3;
    msg = "";
    rulesets = "backdoors, pop3scanners";
    security_tolerance = 3
    life_insurance = 5
    }
    }

    Сами же правила выглядят, например, следующим образом:

    Ruleset {
    name = backdoors;
    rule {
    id = 0x1000;
    type = alert;
    proto = tcp;
    src = localhost;
    dst = 195.208.245.0/24:2000;
    msg = "service::what is bad in this alert";
    options = AP,vice_versa;
    contains = "|0a0a0d03|";
    phase = exploiting;
    treat = file-unauthorized-access;
    revision = 1;
    }
    }

    Здесь учитываются как классические признаки события (тип события, протокол обнаружения, источник и объект воздействия, краткое сообщение), так и добавочные — фаза атаки, тип угрозы, к возникновению которой относится данное событие. При этом сами правила могут быть сгруппированы в наборы, пригодные затем для связывания их с установленными в защищаемой системе сетевыми и локальными службами.

    Если же вернуться к эффективности проверки правил в системах обнаружения сетевых атак, то следует отметить следующий факт. На текущий момент все правила в системах СОА проверяются следующим образом (см. ). Проверка неоднородных правил происходит раздельно, правило за правилом, при этом однородные операции над пакетами выполняются все время порознь. Такой подход не позволяет эффективно распараллелить обработку сетевых пакетов, полностью использовать возможности нескольких конвейеров на современных процессорах, а также оптимизировать поиск частично похожих правил-сигнатур.

    Однако есть минус и такого подхода, когда, например, шаблоны связаны друг с другом (вот пример такого шаблона: найти первое вхождение, затем относительно него через несколько байт проверить наличие определенной бинарной последовательности). Правда, таких правил — подавляющее меньшинство (даже если судить по общепринятым правилам популярной СОА Snort), что позволяет вынести их в отдельный класс распараллеливаемых методов и использовать в них любые простые методы последовательной проверки.

    Помимо преимущества в распараллеливании процесса поиска сигнатур, становится возможным применение методов одновременного поиска многих сигнатур в сетевом потоке за один проход (можно, например, построить один большой конечный автомат для большинства шаблонов, участвующих в правилах, или использовать мультисигнатурную модернизацию алгоритма Бойера-Мура).

    Экспериментальные проверки различных вариантов реализации методов одновременного поиска многих сигнатур показали, что наиболее быстрой оказывается реализация большого конечного автомата, модифицированного таким образом, чтобы он позволял "пропускать" однородные ошибки — пропуски и вставки произвольной длины, а также ошибки замены (в результате модификации сигнатуры, что является довольно частым явлением, с целью ее сокрытия от СОА).

    Наиболее сложные в проверке правила (шаблоны) можно предварительно компилировать в бинарные подключаемые модули (как это сделано, например, в системе RealSecure IDS).

    Заключение

    Современный подход к построению систем обнаружения сетевых вторжений и выявления признаков компьютерных атак на информационные системы полон недостатков и уязвимостей, позволяющих, к сожалению, злонамеренным воздействиям успешно преодолевать системы защиты информации. Переход от поиска сигнатур атак к выявлению предпосылок возникновения угроз информационной безопасности должен способствовать тому, чтобы в корне изменить данную ситуацию, сократив дистанцию отставания в развитии систем защиты от систем их преодоления.

    Кроме того, такой переход должен способствовать повышению эффективности управления информационной безопасностью и, наконец, более конкретным примерам применения нормативных и руководящих документов уже ставших стандартами.