H Рекуррентные нейронные сети. Методология обучения рекуррентной искусственной нейронной сети с динамической стековой памятью

Приветствую! Частенько я публиковал статьи различного вида, в которых объяснял о сетях прямого распространения. В них я рассказывал о том, как нейронные сети обучаются, о том, как работают нейроны и о практическом применении сетей. Теперь я расскажу о сетях, которые подходят для чат-ботов, сложного прогнозирования, классификации текстов и многого другого.

Архитектура

Как нам известно, нейронные сети прямого распространения имеют входной слой, скрытые слои, выходной слой. Рекуррентные сети имеют почти такое же строение, только к ним добавляется слой временной задержки. Например, скрытый слой связан с временной задержкой. Мы посылаем сигналы от входного слоя на скрытый, скрытый слой посылает обработанную информацию на слой временной задержки и на выходной слой. В следующий раз, когда мы посылаем опять сигналы, информация идёт от входного слоя к скрытому, да и ещё от слоя задержки идут сигналы через такие же синапсы(веса). После этого скрытый слой обрабатывает информацию, так же посылает новые сигналы на слой временной задержки и на выходной слой. Рассмотрим это всё на рисунке:

Давайте опишем это математической формулой. Сначала мы посылаем информацию от входного слоя по весам к скрытому: h1 = (x1 * w1) + (x2 * w4); h2 = (x1 * w2) + (x2 * w3)
Теперь посылаем информацию от скрытых нейронов на слой временной задержки и на выход сети: c1 = h1, c2 = h2; выход1 = (h1 * w5) + (h2 * w6)

Всё, мы получили первый ответ. Теперь мы записали данные слой временной задержки и снова начинаем прогонять сигнал, только добавляем сигналы от временной задержки: h1 = (x1 * w1) + (x2 * w4) + (c1 * c_w1) + (c2 * c_w3); и на второй скрытый нейрон h2 = (x1 * w2) + (x2 * w3) + (c1 * c_w2) + (c2 * c_w4). Теперь мы снова отправляем полученные данные на слой задержки и на выход: c1 = h1, c2 = h2; выход1 = (h1 * w5) + (h2 * w6).

С первого взгляда не понятно, если не знать строение искусственных нейронов. Напомню, что нейрон имеет весовые коэффициенты, которые умножаются на получаемые данные, в результате мы получаем модифицированный ответ. Затем модифицированные ответы в нейроне складываются и идут в функцию активации. Функция активации делает из суммирования понятный для нас ответ. Мы можем использовать пороговую функцию или сигмоидальные(гиперболический тангенс и логистическая функция)

Пороговая функция. Когда мы имеем результат суммирования и какой-то порог, мы сравниваем их. Если суммарный результат больше порогового, то нейрон выдаст 1, а если нет, то 0.

Гиперболический тангенс преобразует суммарный результат в число от -1 до 1. Для этого используют формулу:
Экспонента — показательная функция.

Логистическая функция преобразует суммарный результат в число от 0 до 1. Для этого используют формулу:

В конечном итоге, получается, что рекуррентные нейронные сети способны на кратковременную память.

Обучение рекуррентных сетей

Для обучения таких сетей очень часто используют метод градиентного спуска. Можно было бы и обратное распространение ошибки, но о нём и так много написано.

Я не буду рассказывать об этом методе обучения подробно. Лишь скажу такой алгоритм:

1. Отправляем сигнал на нейронную сеть.
2. Вычисляем ошибку (Берём правильный ответ и вычитаем из него ответ нейронной сети)
3. Умножаем ошибку на уклон сигмоиды.
4. Умножаем входные данные на результат из 3 шага.
5. Складываем результаты из 4 пункта(вектора или матрицы)
6. Вычитаем из весов результаты 5 пункта.

Получить ошибку можно таким образом: из правильного ответа вычесть ответ сети.
Уклон сигмоиды получается таким образом: выход * (1 — выход)

Думаю, что всё хоть немного понятно. В следующей части я расскажу о том, как на практике применить такую сеть с градиентным спуском и о том, как работают LSTM сети.

В нашем сегодняшнем материале мы напомним читателям о понятии искусственной нейронной сети (ИНС), а также о том, какими они бывают, и рассмотрим вопросы решения задачи прогнозирования при помощи ИНС в общем и рекуррентных ИНС в частности.

Нейронные сети

Для начала давайте вспомним, что вообще такое искусственная нейронная сеть. В одной из предыдущих статей мы уже обсуждали, что ИНС – это сеть искусственных нейронов («черный ящик» со множеством входов и одним выходом), осуществляющая преобразование вектора входных сигналов (данных) в вектор выходных сигналов при помощи некоей функции, называемой функцией активации. При этом между слоем «принимающих» нейронов и выходным слоем присутствует как минимум один промежуточный.

Вид структуры ИНС определяет понятие обратной связи: таким образом, в ИНС прямого распространения сигнал идет последовательно от входного слоя нейронов по промежуточным к выходному; рекуррентная же структура подразумевает наличие обратных связей, когда сигнал с выходных или промежуточных нейронов частично поступает на входы входного слоя нейронов (или одного из внешних промежуточных слоев).

Рекуррентные нейронные сети

Если остановится на рекуррентных ИНС немного подробнее, то выяснится, что наиболее современные (и считающиеся наиболее «удачными») из них берут начало из структуры, называемой многослойным перцептроном (математической модели мозга – ИНС прямого распространения с промежуточными слоями). При этом со времен своего появления они претерпели значительные изменения – и ИНС «нового поколения» устроены гораздо проще своих предшественников, при том, что они позволяют с успехом решать задачи запоминания последовательностей. Так, к примеру, наиболее популярная на сегодняшний день сеть Элмана устроена таким образом, что обратный сигнал с внутреннего слоя поступает не на «главные» входные нейроны, а на дополнительные входы – так называемый контекст. Эти нейроны хранят информацию о предыдущем входном векторе (стимуле); получается, что выходной сигнал (реакция сети) зависит не только от текущего стимула, но и от предыдущего.

Решение задачи прогнозирования

Понятно, что сети Элмана потенциально пригодны для прогнозирования (в частности, временных рядов). Однако известно также, что нейронные сети прямого распространения с успехом справляются с этой задачей – правда, не во всех случаях. Как пример, предлагаем рассмотреть одну из наиболее популярных вариаций задачи прогнозирования – прогнозирование временных рядов (ВР). Постановка задачи сводится к выбору произвольного ВР с N отсчетами. Далее данные разделяются на три выборки – обучающую, тестирующую и контрольную – и подаются на вход ИНС. Полученный результат будет представлен в виде значения временного ряда в требуемый момент времени.

В общем случае, задача прогнозирования временных рядов с помощью ИНС сводится к следующей последовательности этапов:

  • сбор данных для обучения (этап, считающийся одним из наиболее сложных);
  • подготовка и нормализация данных (приведение к виду ВР);
  • выбор топологии ИНС (на этом этапе принимается решение о количестве слоев и наличии обратной связи);
  • эмпирический (путем эксперимента) подбор характеристик ИНС;
  • эмпирический подбор параметров обучения;
  • обучение ИНС;
  • проверка обучения на адекватность поставленной задаче;
  • корректировка параметров с учетом предыдущего шага, окончательное обучение;
  • вербализация ИНС (минимизированное описание с использованием нескольких алгебраических или логических функций) с целью дальнейшего использования.

Почему рекуррентные ИНС?

Понятно, что решение о топологии ИНС способно повлиять на результат; но вернемся к началу разговора: почему же мы сознательно выбрали темой этой статьи прогнозирование при помощи рекуррентной сети? Ведь, если «погуглить», прогнозирование ВР в работах обычно производится при помощи многослойных перцептронов (мы помним, что это сети прямого распространения) и метода обратного распространения ошибки. Здесь стоит пояснить: да, действительно, в теории такие ИНС хорошо решают задачу прогнозирования – при условии, что степень зашумленности (ошибок и пропусков во входных данных), например, исходного временного ряда минимальна.

На практике же временные ряды обладают порядочной зашумленностью – что, естественно, вызывает проблемы при попытке прогнозирования. Снизить степень ошибки позволяет использование коллекций сетей прямого распространения – однако это существенно увеличивает не только сложность самой структуры, но и время ее обучения.

Использование рекуррентной сети Элмана позволяет решать задачу прогнозирования даже на сильно зашумленных временных рядах (это особенно важно для бизнеса). В общем случае эта ИНС представляет собой структуру из трех слоев, а также набора дополнительных «контекстных» элементов (входов). Обратные связи идут от скрытого слоя к этим элементам; каждая связь имеет фиксированный вес, равный единице. На каждом временном отрезке входные данные распределяются по нейронам в прямом направлении; затем на них применяется обучающее правило. Благодаря фиксированным обратным связям, контекстные элементы всегда хранят копию значений из скрытого слоя за предыдущий шаг (поскольку они отправляются в обратном направлении еще до применения обучающего правила). Таким образом, шум временного ряда постепенно нивелируется, и вместе с ним минимизируется и ошибка: мы получаем прогноз, который в общем случае будет точнее, чем результат классического подхода, что западные работы подтверждают экспериментально.

Резюме

Рассмотрев некоторые аспекты практического применения нейронных сетей к решению задачи прогнозирования, можно сделать вывод: за рекуррентной моделью будущее прогнозирования. По крайней мере, это касается зашумленных временных рядов – а, как известно, на практике, особенно в бизнесе, без неточностей и пропусков в данных дело не обходится. Западная наука, а следом за ней и энтузиасты-практики это уже поняли. На постсоветском же пространстве дойти до этих умозаключений широкой общественности еще предстоит – мы надеемся, что этот материал поможет нашим читателям сделать свои выводы уже сегодня.

Глубинные свёрточные обратные графические сети (deep convolutional inverse graphics networks, DCIGN) названы слегка некорректно, поскольку они по сути являются вариационными автокодировщиками, кодирующая и декодирующая части которых представлены свёрточной и развёртывающей НС соответственно. Сети такого типа моделируют свойства в виде вероятностей, поэтому их можно научить создавать картинку с собакой и кошкой, даже если сеть видела только картинки, на которых было только одно из животных. Возможно и удаление одного из двух объектов. Также были созданы сети, которые могли менять источник освещения и вращать объект. Сети такого типа обычно обучают методом обратного распространения ошибки.

Генеративные состязательные сети (generative adversarial networks, GAN) - это сети другого вида, они похожи на близнецов. Такие сети состоят из любых двух (обычно из FF и CNN), одна из которых контент генерирует, а другая - оценивает. Сеть-дискриминатор получает обучающие или созданные генератором данные. Степень угадывания дискриминатором источника данных в дальнейшем участвует в формировании ошибки. Таким образом, возникает состязание между генератором и дискриминатором, где первый учится обманывать первого, а второй - раскрывать обман (похоже на ситуацию «банкир-фальшивомонетчик»). Обучать такие сети весьма тяжело, поскольку нужно не только обучить каждую из них, но и настроить баланс.

Рекуррентные нейронные сети (recurrent neural networks, RNN) - это сети типа FFNN, но с особенностью: нейроны получают информацию не только от предыдущего слоя, но и от самих себя предыдущего прохода. Это означает, что порядок, в котором вы подаёте данные и обучаете сеть, становится важным. Большой сложностью сетей RNN является проблема исчезающего (или взрывного) градиента, которая заключается в быстрой потере информации с течением времени. Конечно, это влияет лишь на веса, а не состояния нейронов, но ведь именно в них накапливается информация. Обычно сети такого типа используются для автоматического дополнения информации.

Сети с долгой краткосрочной памятью (long short term memory, LSTM) стараются решить вышеупомянутую проблему потери информации, используя фильтры и явно заданную клетку памяти. У каждого нейрона есть клетка памяти и три фильтра: входной, выходной и забывающий. Целью этих фильтров является защита информации. Входной фильтр определяет, сколько информации из предыдущего слоя будет храниться в клетке. Выходной фильтр определяет, сколько информации получат следующие слои. Ну а забывающий фильтр, каким бы странным не казался, также выполняет полезную функцию: например, если сеть изучает книгу и переходит на новую главу, какие-то символы из старой можно забыть. Такие сети способны научиться создавать сложные структуры, например, писать как Шекспир или сочинять простую музыку, но и ресурсов они потребляют немало.

Управляемые рекуррентные нейроны (gated recurrent units, GRU) - это небольшая вариация предыдущей сети. У них на один фильтр меньше, и связи реализованы иначе. Фильтр обновления определяет, сколько информации останется от прошлого состояния и сколько будет взято из предыдущего слоя. Фильтр сброса работает примерно как забывающий фильтр.

Нейронные машины Тьюринга (neural Turing machines, NTM) можно рассматривать как абстрактную модель LSTM и попытку показать, что на самом деле происходит внутри нейронной сети. Ячейка памяти не помещена в нейрон, а размещена отдельно с целью объединить эффективность обычного хранилища данных и мощь нейронной сети. Собственно, поэтому такие сети и называются машинами Тьюринга - в силу способности читать и записывать данные и менять состояние в зависимости от прочитанного они являются тьюринг-полными.

Двунаправленные RNN, LSTM и GRU (bidirectional recurrent neural networks, bidirectional long / short term memory networks и bidirectional gated recurrent units, BiRNN, BiLSTM и BiGRU) не показаны в таблице, поскольку они ничем не отличаются от своих однонаправленных вариантов. Разница заключается в том, что эти сети используют не только данные из «прошлого», но и из «будущего». Например, обычную сеть типа LSTM обучают угадывать слово «рыба», подавая буквы по одной, а двунаправленную - подавая ещё и следующую букву из последовательности. Такие сети способны, например, не только расширять изображение по краям, но и заполнять дыры внутри.

Глубинные остаточные сети (deep residual networks, DRN) - это очень глубокие сети типа FFNN с дополнительными связями между отделёнными друг от друга слоями. Такие сети можно обучать на шаблонах глубиной аж до 150 слоёв - гораздо больше, чем можно было бы ожидать. Однако, было показано, что эти сети мало чем отличаются от рекуррентных, и их часто сравнивают с сетями LSTM.

Нейронная эхо-сеть (echo state networks, ESN) - это ещё одна разновидность рекуррентных сетей. Её особенностью является отсутствие сформированных слоёв, т.е. связи между нейронами случайны. Соответственно, метод обратного распространения ошибки не срабатывает. Вместо этого нужно подавать входных данные, передавать их по сети и обновлять нейроны, наблюдая за выходными данными.

Метод экстремального обучения (extreme learning machines, ELM) - это, по сути, сеть типа FFNN, но со случайными связями. Они очень похожи на сети LSM и ESN, но используются как FFNN. Так происходит не только потому, что они не рекуррентны, но и потому, что их можно обучать просто методом обратного распространения ошибки.

Метод неустойчивых состояний (liquid state machines, LSM) похож на эхо-сеть, но есть существенное отличие: сигмоидная активация заменена пороговой функцией, а каждый нейрон является накопительной ячейкой памяти. Таким образом, при обновлении нейрона его значение не становится равным сумме соседей, а прибавляется само к себе, и при достижении порога сообщается другим нейронам.

Метод опорных векторов (support vector machines, SVM) находит оптимальные решения задачи оптимизации. Классическая версия способна категоризировать линейно разделяемые данные: например, различать изображения с котом Томом и с котом Гарфилдом. В процессе обучения сеть как бы размещает все данные на 2D-графике и пытается разделить данные прямой линией так, чтобы с каждой стороны были данные только одного класса и чтобы расстояние от данные до линии было максимальным. Используя трюк с ядром, можно классифицировать данные размерности n. Что характерно, этот метод не всегда рассматривается как нейронная сеть.

И наконец, нейронные сети Кохонена (Kohonen networks, KN) , также известные как самоорганизующиеся карты (self organising (feature) maps, SOM, SOFM) , завершают наш список. Эти сети используют соревновательное обучение для классификации данных без учителя. Сети подаются входные данные, после чего сеть определяет, какие из нейронов максимально совпадают с ними. После этого эти нейроны изменяются для ещё большей точности совпадения, в процессе двигая за собой соседей. Иногда карты Кохонена также не считаются нейронными сетями.

Вот и всё! После прочтения наших статей и прилагающихся материалов вы точно будете уверенно разбираться в видах нейронных сетей 🙂

Рекуррентными нейронными сетями называются такие сети, в ко­торых выходы нейронных элементов последующих слоев имеют синаптические соединения с нейронами предшествующих слоев. Это приво­дит к возможности учета результатов преобразования нейронной сетью информации на предыдущем этапе для обработки входного вектора на следующем этапе функционирования сети. Рекуррентные сети могут использоваться для решения задач прогнозирования и управления.

Архитектура рекуррентных сетей

Существуют различные варианты архитектур рекуррентных ней­ронных сетей.

Сеть Джордана: В 1986 г. Джордан (Jordan) предложил рекур­рентную сеть (рис. 6), в которой выходы нейронных элементов по­следнего слоя соединены посредством специальных входных нейронов с нейронами промежуточного слоя. Такие входные нейронные эле­менты называются контекстными нейронами (context units). Они рас­пределяют выходные данные нейронной сети на нейронные элементы промежуточного слоя.

Рис. 6 Архитектура рекуррентной ней­ронной сети с обратными связями от нейро­нов выходного слоя

Число контекстных нейронов равняется числу выходных ней­ронных элементов рекуррентной сети. В качестве выходного слоя та­ких сетей используются нейронные элементы с линейной функцией активации. Тогда выходное значение j -го нейронного элемента последнего слоя определяется по формуле

где v ij - весовой коэффи­циент между i -м нейроном промежуточного и j -м ней­роном выходного слоев; P i (t )- выходное значение i -го нейрона промежуточ­ного слоя; t j - пороговое значение j -го нейрона вы­ходного слоя. Взвешенная сумма i -гo нейронного элемента промежуточного слоя определяется следующим образом:

где w ij - весовой коэффициент между j -м нейроном входного и i -м нейроном промежуточного слоев; р - число нейронов выходного слоя; w ki - весовой коэффициент между k -м контекстным нейроном и i -м нейроном промежуточного слоя; T - пороговое значение i -го нейрона промежуточного слоя; n - размерность входно­го вектора.



Тогда выходное значение i -го нейрона скрытого слоя

В качестве функции не­линейного преобразования F обычно используется гипер­болический тангенс или сигмоидная функция.

Для обучения рекуррентных нейронных сетей применяется алго­ритм обратного распространения ошибки.

Алгоритм обучения рекуррентной нейронной сети в общем слу­чае состоит из следующих шагов:

1. В начальный момент времени t = 1 все контекстные нейроны устанавливаются в нулевое состояние - выходные значения прирав­ниваются нулю.

2. Входной образ подается на сеть и происходит прямое распро­странение его в нейронной сети.

3. В соответствии с алгоритмом обратного распространения ошибки модифицируются весовые коэффициенты и пороговые значе­ния нейронных элементов.

4. Устанавливается t = t +1 и осуществляется переход к шагу 2. Обучение рекуррентной сети производится до тех пор, пока сум­марная среднеквадратичная ошибка сети не станет меньше заданной.

авторитет 7 января 2016 в 15:24

Рекуррентная нейронная сеть решает задачу поддержания равновесия

  • Искусственный интеллект

Сразу постановка задачи.

Дано:
Примитивное виртуальное пространство для проведения эксперимента:
1. Аквариум высотой 1000 мм.
2. Дырявое дно аквариума. Уровень воды уменьшается на 1 мм за такт.
3. Стакан с водой, доливка которой в аквариум повышает уровень воды на 6 мм.

Также имеется заготовка нейронной сети, состоящая из:
1. 1000 рецепторов. По 1 рецептору на миллиметр.
2. 1 эффектор. Возбужденный в текущем такте, дает команду вылить стакан воды в аквариум.

Хотелось бы:
1. Добиться поддержания определенного нами уровня воды в аквариуме. Ну, или близко к нему. В текущем примере 500 мм.

Результат эксперимента:
На графике показан уровень воды с течением времени.

Укрупненный масштаб на старте эксперимента:

1. Стартуем со 100 мм уровня. Видно, что уровень воды неуклонно падает. Необученная заготовка нейросети просто не знает, что делать.
2. Достигнув нуля, т.е. иссушив аквариум, сеть запускает рефлекторную реакцию выливания порции воды.
3. Далее происходит рост уровня воды. Сеть получает поощрение, если уровень приблизился к требуемому. В противном случае - наказание.

Случайные дестабилизирующие воздействия:

4. Один раз в 1000 тактов происходит мощное дестабилизирующее воздействие на систему. Доливаем (выливаем) случайное количество воды.
5. Уровень воды в аквариуме стабилизируется.

Что происходит с сетью в процессе эксперимента:
1. Разрастается, создаются новые нейроны.
2. Синапсы обучаются.

Характеристики сети и ее структурных элементов:
1. Сеть - рекуррентная, возможны связи «на себя».
2. Синапсы, нейроны не удаляются.
3. Использовалось около 10000 нейронов и 500000 синапсов.
4. Сеть не использует математических функций над вещественным переменным. Из математики используется только суммирование целочисленных величин.

Что, собственно, предложено инновационного:
1. Способ обучения синапсов (остался за кадром, простите) .
2. Механизм добавления/удаления структурных элементов (за кадром) .
3. Ну и, в целом, не использующая математику, рекуррентная нейронная сеть.

Что еще необходимо реализовать:
1. Механизм уничтожения «бесполезных» синапсов и нейронов. В текущей реализации они вреда не приносят, но отнимают много времени на обсчет.
2. Визуализация нейросети была бы не лишней.
3. И все остальное… Пока не понятно, т.к. приходится быть последовательным.

Буду рад здоровой критике и вопросам!

Замечания:
1. Тема - хобби для меня.
2. Написано самостоятельно на C++.
3. ИИ будет чуть позже.

Спасибо!

Теги: нейронные сети, рекуррентная нейросеть, нейрон, синапс, пид-регулятор, искусственный интеллект