Методы расширения спектра. Курсовая работа Модуляция с расширением спектра. Прямое расширение спектра


Министерство транспорта Российской Федерации
Государственное образовательное учреждение
Высшего профессионального образования
Волжская государственная академия водного транспорта

Кафедра информатики, систем управления и телекоммуникаций

Курсовая работа по теме:
«Модуляция с расширением спектра. Прямое расширение спектра»

Выполнил
студент группы Р-312
Аминов А.Р.

Проверил
Преображенский А.В.

Н.Новгород
2009г.

Модуляция с расширением спектра.
Повсеместное распространение беспроводных сетей, развитие инфраструктуры хот-спотов, появление мобильных технологий со встроенным беспроводным решением (Intel Centrino) привело к тому, что конечные пользователи (не говоря уже о корпоративных клиентах) стали обращать все большее внимание на беспроводные решения. Такие решения рассматриваются, прежде всего, как средство развертывания мобильных и стационарных беспроводных локальных сетей и средство оперативного доступа в Интернет. Однако конечный пользователь, не являющийся сетевым администратором, как правило, не слишком хорошо разбирается в сетевых технологиях, поэтому ему трудно сделать выбор при покупке беспроводного решения, особенно учитывая многообразие предлагаемых сегодня продуктов.
Бурное развитие технологии беспроводной связи привело к тому, что пользователи, не успев привыкнуть к одному стандарту, вынуждены переходить на другой, предлагающий еще более высокие скорости передачи. Речь, конечно же, идет о семействе протоколов беспроводной связи, известном как IEEE 802.11, куда входят следующие протоколы: 802.11, 802.11b, 802.11b+, 802.11a, 802.11g. В последнее время стали говорить и о расширении протокола 802.11g.
Различные типы беспроводных сетей отличаются друг от друга и радиусом действия, и поддерживаемыми скоростями соединения, и технологией кодирования данных. Так, стандарт IEEE 802.11b предусматривает максимальную скорость соединения 11 Мбит/с, стандарт IEEE 802.11b+ - 22 Мбит/с, стандарты IEEE 802.11g и 802.11a - 54 Мбит/с.
Будущее стандарта 802.11a довольно туманно. Наверняка в России и в Европе этот стандарт не получит широкого распространения, да и в США, где он сейчас используется, скорее всего, в ближайшее время произойдет переход на альтернативные стандарты. А вот новый стандарт 802.11g имеет значительные шансы завоевать признание во всем мире. Другое преимущество нового стандарта 802.11g заключается в том, что он полностью совместим со стандартами 802.11b и 802.11b+, то есть любое устройство, поддерживающее стандарт 802.11g, будет работать (правда, на меньших скоростях соединения) и в сетях стандарта 802.11b/b+, а устройство, поддерживающее стандарт 802.11b/b+ - в сетях стандарта 802.11g, хотя и с меньшей скоростью соединения.
Совместимость стандартов 802.11g и 802.11b/b+ обусловлена, во-первых, тем, что они предполагают использование одного и того же частотного диапазона, а во-вторых, что все режимы, предусмотренные в протоколах 802.11b/b+, реализованы и в стандарте 802.11g. Поэтому стандарт 802.11b/b+ можно рассматривать как подмножество стандарта 802.11g.
Физический уровень протокола 802.11
Обзор протоколов семейства 802.11b/g целесообразно начать именно с протокола 802.11, который, хотя уже и не встречается в чистом виде, в то же время является прародителем всех остальных протоколов. В стандарте 802.11, как и во всех остальных стандартах данного семейства, предусмотрено использование частотного диапазона от 2400 до 2483,5 МГц, то есть частотный диапазон шириной 83,5 МГц, который, как будет показано далее, разбит на несколько частотных подканалов.
Технология расширения спектра
В основе всех беспроводных протоколов семейства 802.11 лежит технология уширения спектра (Spread Spectrum, SS). Данная технология подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире спектра первоначального сигнала. То есть спектр сигнала как бы «размазывается» по частотному диапазону. Одновременно с уширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала - энергия сигнала также «размазывается» по спектру. В результате максимальная мощность преобразованного сигнала оказывается значительно ниже мощности исходного сигнала. При этом уровень полезного информационного сигнала может в буквальном смысле сравниваться с уровнем естественного шума. В результате сигнал становится, в каком то смысле, «невидимым» - он просто теряется на уровне естественного шума.
Собственно, именно в изменении спектральной энергетической плотности сигнала и заключается идея уширения спектра. Дело в том, что если подходить к проблеме передачи данных традиционным способом, то есть так, как это делается в радиоэфире, где каждой радиостанции отводится свой диапазон вещания, то мы неизбежно столкнемся с проблемой, что в ограниченном радиодиапазоне, предназначенном для совместного использования, невозможно «уместить» всех желающих. Поэтому необходимо найти такой способ передачи информации, при котором пользователи могли бы сосуществовать в одном частотном диапазоне и при этом не мешать друг другу. Именно эту задачу и решает технология уширения спектра.
Преимущества систем с расширением спектра
- Высокая помехоустойчивость. При ограниченной полосе спектральной плотности помехи отношение сигнал /шум увеличивается в G p = П ш /П раз, где П –полоса исходного сигнала, П ш - полоса сигнала после расширения спектра, G p - коэффициент расширения спектра. Если спектр помехи равномерен (белый шум), отношение сигнал /шум не улучшается.
- Конфиденциальность связи. Сообщение нельзя прочитать, не зная алгоритма расширения спектра.
- Возможность одновременной передачи многих сообщений на одной несущей частоте в системе с кодовым разделением каналов (CDMA (англ. Code Division Multiple Access) - множественный доступ с кодовым разделением.
Каналы трафика при таком способе разделения среды создаются присвоением каждому пользователю отдельного числового кода, который распространяется по всей ширине полосы. Нет временного разделения, все абоненты постоянно используют всю ширину канала. Полоса частот одного канала очень широка, вещание абонентов накладывается друг на друга но, поскольку их коды отличаются, они могут быть дифференцированы.
Технология множественного доступа с кодовым разделением каналов известна давно. В СССР первая работа, посвящённая этой теме, была опубликована ещё в 1935 году Д. В. Агеевым
.)

- Возможность передачи маломощного сигнала. Энергия сигнала сохраняется высокой за счет увеличения длительности сигнала. Обеспечивается энергетическая скрытность связи. Сигнал не обнаруживается, а воспринимается как шум.
- Высокая разрешающая способность по времени (чем шире спектр, тем круче фронт сигнала). Момент начала сигнала определяется очень точно, что важно для систем измерения расстояния по времени прохождения сигнала и для синхронизации передатчика и приемника.
Наиболее распространенные методы расширения спектра
- Прямое расширение спектра (direct sequencing) с использованием двоичной псевдослучайной последовательности (ПСП), модулирующей сигнал. Ширина спектра ограничивается минимальной технически реализуемой длительностью элементарного символа ПСП. Спектр расширяется до десятков мегагерц.
- Скачкообразная перестройка несущей частоты (frequency hopping). Обычно используется М-арная частотная манипуляция. М символам соответствуют М частот, разнесенных друг от друга на интервал D f. Центральная частота f 0 этого диапазона изменяется скачками под управлением ПСП в полосе перестройки несколько раз за время передачи одного символа сообщения (быстрая перестройка) или с интервалом, равным длительности нескольких символов (медленная перестройка). Из-за скачков частоты трудно сохранить когерентность сигнала. Поэтому демодуляция обычно некогерентная. Для обеспечения ортогональности сигналов расстояние между частотами должно удовлетворять условию D f = m/ T s , m –целое число. Спектр может расширяться до нескольких гигагерц: коэффициент расширения спектра выше, чем при прямом расширении.
Прямое расширение спектра
При потенциальном кодировании информационные биты - логические нули и единицы - передаются прямоугольными импульсами напряжений. Прямоугольный импульс длительности T имеет спектр, ширина которого обратно пропорциональна длительности импульса. Поэтому чем меньше длительность информационного бита, тем больший спектр занимает такой сигнал.
Для преднамеренного уширения спектра первоначально узкополосного сигнала в технологии DSSS в каждый передаваемый информационный бит (логический 0 или 1) в буквальном смысле встраивается последовательность так называемых чипов. Если информационные биты - логические нули или единицы - при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип - это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n-раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.
Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.
Как уширить спектр сигнала и сделать его неотличимым от естественного шума, понятно. Для этого, в принципе, можно воспользоваться произвольной (случайной) чиповой последовательностью. Однако, возникает вопрос: а как такой сигнал принимать? Ведь если он становится шумоподобным, то выделить из него полезный информационный сигнал не так то просто, если вообще возможно. Оказывается, возможно, но для этого нужно соответствующим образом подобрать чиповую последовательность. Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определенным требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приемнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приемника.
Основные требования к ПСП
- Непредсказуемость появления знаков 1 и 0, благодаря чему спектр сигнала становится равномерным, а определение алгоритма формирования ПСП по ее участку ограниченной длины – невозможным.
- Наличие большого набора разных ПСП одинаковой длины для построения систем с кодовым разделением каналов.
- Хорошие корреляционные свойства ПСП, описываемые функциями автокорреляции (ФАК) и взаимной корреляции (ФВК), периодическими и апериодическими.
Характеристики псевдослучайных последовательностей (ПСП)
Характеристиками ПСП являются функции автокорреляции (ФАК) и взаимной корреляции (ФВК), периодические и апериодические. ФАК и ФВК вычисляются подсчетом разности числа совпадающих и не совпадающих разрядов сравниваемых ПСП при сдвигах одной из них.
Периодические ФАК и ФВК
и т.д.................

В технологиях радиосвязи крайне важную роль играет расширенный спектр. Данный метод не подпадает ни под одну из категорий, опреде­ленных в предыдущей главе, поскольку может быть использован для передачи как цифровых, так и аналоговых данных с помощью аналогового сигнала.

Изначально метод расширенного спектра создавался для разведывательных и военных целей. Основная идея метода состоит в том, чтобы распределить информа­ционный сигнал по широкой полосе радиодиапазона, что в итоге позволит значи­тельно усложнить подавление или перехват сигнала. Первая разработанная схема расширенного спектра известна как метод перестройки частоты. Более современной схемой расширенного спектра является метод прямой последовательности. Оба мето­да используются в различных стандартах и продуктах беспроводной связи.

Ниже, после краткого обзора, названные методы расширенного спектра рас­сматриваются подробно. Кроме того, в данной главе будет исследован метод множественного доступа на основе расширения спектра.

Как бы невероятно это не звучало, но расширение спектра методом перестройки частоты придумала голливудская кинозвезда Хеди Ламарр (Hedy Lamarr) в 1940 году в возрасте 26 лет. В 1942 году Ламарр запатентовала свое изобретение (патент США 2 292 387 от 11 августа 1942 г.) совместно с партнером, который начал принимать уча­стие в работе несколько позже. Девушка не получила никакой прибыли от патента, счи­тая открытый ею метод связи своим вкладом в участие США во второй мировой войне.

7.1. Понятие расширенного спектра

На рис. 7.1 приведены ключевые элементы системы расширенного спектра. Входной сигнал поступает на канальный кодер, который генерирует аналоговый сигнал со сравнительно узкой полосой, центрированной на определенной частоте. Далее сигнал модулируется с помощью последовательности чисел, именуемой кодом расширения, или расширяющей последовательностью. Обычно, хотя и не всегда, код расширения создается генератором случайных чисел. В результате модуляции полоса передаваемого сигнала значительно расширяется (другими словами, расширяется спектр сигнала). После приема сигнал демодулируется с использованием того же кода расширения. Последний шаг - сигнал подается на канальный декодер для восстановления данных.

Рис. 7.1. Общая схема цифровой системы связи с использованием расширенного спектра

Избыток спектра дает возможность получить следующие преимущества.

    Невосприимчивость сигнала к различным типам шумов, а также к искаже­ниям, вызванным многолучевым распространением. Впервые расширенный спектр был использован в военных целях благодаря устойчивости расширенного сигнала к попыткам подавления.

    Расширенный спектр позволяет скрывать и шифровать сигналы. Восстановить зашифрованные данные сможет только пользователь, которому известен код расширения.

    Несколько пользователей могут одновременно использовать одну полосу частот при крайне малой взаимной интерференции. Данное свойство используется в технологии мобильной связи, известной как уплотнение с кодовым разделением (code division multiplexing - CDM), или множественный доступ с кодовым разделением (code division multiple access - CDMA).

Расширение спектра

В данной лекции мы рассмотрим основные принципы технологии расширения спектра сигнала.

Расширение спектра – технология, говоря простыми словами, в которой модулированный сигнал представляется сигналом с полосой, намного превышающую полосу информационного сигнала.

Современные мобильные средства коммуникации основаны на технологии расширения спектра и широко распространены под названием «CDMA».

Рассмотрим стандарт CDMA IS-95 (cdmaOne) как наиболее широко используемый в настоящее время. Технология расширения спектра впервые была предложена для мобильных коммуникаторов в 1980-х годах, коммерческим распространением занялась впервые компания Qualcomm Inc, представившая данный стандарт формате DS-CDMA (Direct Sequence Code Division Multiple Access). Коммерческая эксплуатация стандарта IS-95 началась в 1996 году в США. Аббревиатура IS (interim standard - временной стандарт) используется для учета в TIA, а цифра означает порядковый номер. Из полного названия стандарта TIA/EIA/IS-95 видно, что в его рассмотрении принимал также участие EIA, который объединяет семь крупных организаций США.

Разновидности множественного доступа: Множественный доступ – проблема нумерации пользователей, которые хотят использовать одинаковый электромагнитный спектр. Она может быть решена несколькими способами:

- Выбор с разделением по частоте (сигналы распространяются только между конкретными коммуникаторами);

- Пространственная фильтрация;

- Множественный доступ с разделением по частоте (FDMA);

- Множественный доступ с разделением по времени (TDMA);

- Множественный доступ с кодовым разделением (CDMA).

TDMA (Time Division Multiple Access- множественный доступ с разделением по времени) - способ использования радиочастот, когда в одном частотном интервале находятся несколько абонентов, разные абоненты используют разные временные слоты (интервалы) для передачи. TDMA предоставляет каждому пользователю полный доступ к интервалу частоты в течение короткого периода времени.

FDMA (Frequency Division Multiple Access- множественный доступ с разделением каналов по частоте) - способ использования радиочастот, когда в одном частотном диапазоне находится только один абонент, разные абоненты используют разные частоты в пределах соты.

CDMA (Code Division Multiple Access- множественный доступ с кодовым разделением) - технология мобильной связи, при которой каналы передачи имеют общую полосу частот, но разную кодовую модуляцию.

В основном CDMA используется в качестве термина для системы модуляции информации в сигнал, имеющий более широкую полосу пропускания, т.е. расширение спектра. Это расширение осуществляется посредством двоичного "кода", который, как правило, очень длинный, и для большинства замечаний и соображений, носит случайный характер. Конечно код не является случайным, он вполне предсказуем, и часто используется термин псевдо-случайный (запутанной термин сам по себе).

Одно из фундаментальных понятий, определяющее помехоустойчивость и эффективность системы CDMA, - «база сигнала» (в англоязычной литературе используется термин «processing gain»). Физический смысл этого понятия - увеличение полосы частот передаваемого сигнала относительно исходного (измеряется в децибелах). Для систем с расширенным спектром база сигнала определяется как отношение ширины полос излучаемого и исходного сигналов. Однако чаще величина базы сигнала (В) вычисляется как произведение ширины спектра (F) на длительность элементарного символа (Т). Для широкополосных сигналов база значительно превышает 1 (В>>1). Ясно, чем шире полоса частот в эфире и ниже скорость входного сигнала, тем больше база сигнала и, соответственно, выше помехоустойчивость.

Однако важно понимать, что база сигнала - это характеристика не всей CDMA-системы, а только ее отдельного канала. Поясним сказанное на примере. Так, при чиповой скорости 1,2288 Мчип/с (IS-95) и информационной скорости 9,6 кбит/c база сигнала равна 21,1 дБ (1,2288x103 /9,6 = 128). База сигнала пропорциональна скорости его передачи.

Широкополосной называется система, которая передает сигнал, занимающий очень широкую полосу частот, значительно превосходящую ту минимальную ширину полосы частот, которая фактически требуется для передачи информации. В широкополосной системе исходный модулирующий сигнал (например, сигнал телефонного канала) с полосой всего несколько килогерц распределяют в полосе частот, ширина которой может быть несколько мегагерц. Это осуществляется путем двойной модуляции несущей передаваемым информационным сигналом и широкополосным кодирующим сигналом. Основной характеристикой широкополосного сигнала является его база B, определяемая как произведение ширины спектра сигнала F на его период Т. В результате перемножения сигнала источника псевдослучайного шума с информационным сигналом энергия последнего распределяется в широкой полосе частот, т.е. его спектр расширяется.

Технология оптимизирована для предоставления высокоскоростных мультимедийных услуг типа видео, доступа в Интернет и видеоконференций; обеспечивает скорости доступа вплоть до 2 Мбит/с на коротких расстояниях и 384 Кбит/с на больших с полной мобильностью. Такие величины скорости

передачи данных требуют широкую полосу частот, поэтому ширина полосы WCDMA составляет 5 МГц.

Технология может быть добавлена к существующим сетям GSM и PDC, что делает стандарт WCDMA наиболее перспективным с точки зрения использования сетевых ресурсов и глобальной совместимости.

В передатчике узкополосный информационный сигнал умножается на опорную псевдошумовую N-символьную последовательность, а полученный сигнал модулируется методом BPSK или QPSK (прямая операция). База результирующего сигнала равна числу символов псевдослучайной последовательности (B = N). При этом использование шумоподобных сигналов с высокой тактовой частотой приводит к тому, что исходный узкополосный

сигнал «размазывается» в широкой полосе и становится меньше уровня шума.

В приемнике исходный сигнал восстанавливается с помощью псевдослучайной последовательности известной структуры (обратная операция). Иные сигналы, поступающие на данный приемник, воспринимаются как шум.

Аналогичным образом происходит подавление мощных узкополосных помех от других работающих передатчиков. В приемнике такая помеха тоже «размазывается» в широкой полосе частот и после фильтрации лишь незначительно ухудшает качество связи. При дальнейшей цифровой обработке помехи можно подавить полностью.

Кроме наиболее часто применяемого метода DS-CDMA существуют и другие технологии расширения спектра, например с помощью нескольких несущих - MC-CDMA (Multi-Carrier CDMA) или скачкообразной перестройки частоты - FHCDMA (Frequency Hopping CDMA). Особенности этих технологий будут рассмотрены в следующих номерах журнала.

Цифровая обработка сигнала в реальном масштабе времени до передачи по РЧ. Принцип построения передатчика/приемника тот же, что и при DS-CDMA, только к ЦАП поступает уже конечный модулированный сигнал. В передатчике/приемнике используется особый фильтр, имеющий название фильтр приподнятого косинуса, который минимизирует межсимвольные искажения путем представления части спектра простейшей формы в косинусоиду, приподнятую таким образом, что чтобы она «сидела» на горизонтальной оси.

Чиппинг - любая операция, посредством которой символы (биты) разбиваются (чиппуются) на меньшие интервалы по времени. Операции скрэмблирования, каналообразования и расширения представляют собой оперцию чиппинга.

Скрэмблирование - это обратимое преобразование цифрового потока без изменения скорости передачи с помощью случайной последовательности. После скремблирования появление «1» и «0» в выходной последовательности равновероятны. Скремблирование - обратимый процесс, то есть исходное сообщение можно восстановить применив обратный алгоритм.

Каналообразование - обратимое преобразование цифрового потока путм разбиения информационного сигнала на чипы с помощью фиксированной последовательности.

Комплексное представление.

Отметим, что комплексное представление является чисто математическим и вводится для удобства записи. В сетях третьего поколения CDMA используются все три представления в комплексном виде. Каналообразование в Uplink-системе осуществляется первым методом представления, а в Downlink-системе – вторым.

Каждый пользователь имеет уникальный расширяющий/ каналообразующий код, скорее всего, ортогональный код Уолша. При нисходящей передачи сигнала берется за основу реальная часть при комплексном представлении чиппованной последовательности и передается с той же скоростью. Переданные закодированные сигналы будут синхронизированы. Каждая подвижная станция знает код скремблирования текущей базовой станции, и ее установленный (и единственный) код расширения - отсюда и восстанавливаются переданные данные.

Логические каналы линии «вниз» включают:

Пилотный канал;

Канал синхронизации;

Канал персонального вызова;

Канал прямого трафика.

В прямом канале (от БС к подвижной) модуляция сигнала функциями Уолша (бинарная фазовая манипуляция) используется для различения разных физических каналов данной БС; модуляция длинной ПСП (бинарная фазовая

манипуляция) - с целью шифрования сообщений; модуляция короткой ПСП (квадратурная фазовая манипуляция двумя ПСП одинакового периода) - для расширения полосы и различения сигналов разных БС.

Различение сигналов разных станций обеспечивается тем, что все БС используют одну и ту же пару коротких ПСП, но со сдвигом на 64 дискрета между разными станциями, т.е. всего в сети 511 кодов; при этом все физические каналы одной БС имеют одну и ту же фазу последовательности.

На БС формируется 4 типа каналов: канал пилот-сигнала (PI), синхроканал (SYNC), вызывной канал (РСН) и канал трафика (ТСН).

Сигналы разных каналов взаимно ортогональны, что гарантирует отсутствие взаимных помех между ними на одной БС. Внутрисистемные помехи в основном возникают от передатчиков других БС, работающих на той же частоте, но с иным циклическим сдвигом.

Излучение пилот-сигнала происходит непрерывно. Для его передачи используют функцию Уолша нулевого порядка (W0 ). Пилот-сигнал - это сигнал несущей, который используется ПС для выбора рабочей ячейки (по наиболее мощному сигналу), а также в качестве опорного для синхронного детектирования сигналов информационных каналов. Обычно на пилот-сигнале излучается около 20% общей мощности, что позволяет мобильной станции (МС) обеспечить точность выделения несущей частоты и осуществить когерентный прием сигналов.

В синхроканале (SYNC) входной поток со скоростью 1,2 кбит/с перекодируется в поток, передаваемый со скоростью 4,8 кбит/с. Синхросообщение содержит технологическую информацию, необходимую для установления начальной синхронизации на МС: данные о точном системном времени, о скорости передачи в канале РСН, о параметрах короткого и длинного кода. Скорость передачи в синхроканале ниже, чем в вызывном (РСН) или канале графика (ТСН), благодаря чему повышается надежность его работы. По завершении процедуры синхронизации МС настраивается на канал вызова РСН и постоянно контролирует его. Для кодирования синхроканала используется функция W32 .

В обратном канале (линии «вверх») асинхронный вариант кодового разделения реализуется в комбинации с некогерентным приемом сигналов на БС. Благодаря этому отпадает необходимость в пилотном канале и канале синхронизации. В итоге остаются лишь два типа логических каналов линии «вверх»:

Канал доступа;

- канал обратного трафика.

Асинхронность кодового разделения делает нерациональным применение функций Уолша в роли каналообразующих последовательностей (сигнатур) физических каналов, так как при относительных временных сдвигах они не могут сохранять ортогональность и имеют весьма непривлекательные взаимные корреляционные свойства.

Канал доступа обеспечивает соединение МС и БС, пока МС не настроилась на назначенный ей канал обратного трафика. Процесс выбора канала доступа случаен – МС произвольно выбирает номер канала из определенного диапазона. Канал доступа используется для регистрации МС в сети, передачи на БС запроса на установление соединения, ответа на команды, переданные по каналу вызова и др. Скорость передачи данных по каналу доступа фиксирована и составляет 4,8 кбит/с.

Канал обратного трафика обеспечивает передачу речевой информации и данных абонента, а также управляющей информации с МС на БС, когда МС уже занимает выделенный ей физический канал.

Коды Уолша.

В стандарте CDMA для кодового разделения каналов используются ортогональные коды Уолша. Коды Уолша формируются из строк матрицы Уолша:

Особенность этой матрицы состоит в том, что каждая ее строка ортогональна любой другой или строке, полученной с помощью операции логического отрицания. В стандарте IS-95 используется матрица 64-го порядка. Для выделения сигнала на выходе приемника применяется цифровой фильтр. При ортогональных сигналах фильтр можно настроить таким образом, что на его выходе всегда будет логический «0», за исключением случаев, когда принимается сигнал, на который он настроен. Кодирование по Уолшу применяется в прямом канале (от БС к AT) для разделения пользователей. В системах, использующих стандарт IS-95, все АС работают одновременно в одной полосе частот. Согласованные фильтры приемников БС квазиоптимальны в условиях взаимной интерференции между абонентами одной соты и весьма чувствительны к эффекту «далекоблизко». Для максимизации абонентской емкости системы необходимо, чтобы терминалы всех абонентов излучали сигнал такой мощности, которая обеспечила бы одинаковый уровень принимаемых БС сигналов. Чем точнее управление мощностью, тем больше абонентская емкость системы.

Псевдо-случайная последовательность.

ПСП – это детерминированный периодический сигнал, который известен обоим корреспондентам. Он имеет все статистические свойства белого шума и для третьей стороны он будет казаться абсолютно случайным - псевдошумовым сигналом. Для того, чтобы ПСП была случайным процессом, необходимо выполнение ряда условий:

- число двоичных единиц не должно отличаться от числа двоичных нулей не более, чем на один элемент;

- ПСП должна обладать хорошими корреляционными свойствами, а, именно, уровни боковых лепестков АКФ такой последовательности должны иметь минимальный уровень.

Таким свойствам удовлетворяет множество последовательностей - последовательности Уолша, Баркера, Голда, М-последовательности и многие другие.

Регистр сдвига с обратной связью по переносу (FCSR, Feedback with carry shift register) - сдвиговый регистр, функция обратной связи и регистр переноса. Длина сдвигового регистра - количество битов. Когда нужно извлечь бит, все биты сдвигового регистра сдвигаются вправо на одну позицию. Новый крайний слева бит и новое значение регистра переноса определяются функцией остальных битов сдвигового регистра и регистра переноса (их биты складываются). Младший бит результата и становится новым крайним левым битом, а новым значением регистра переноса становится остальные биты результата (кроме младшего).

В отличие от LFSR, для FCSR существует задержка, прежде чем он перейдёт в циклический режим, то есть начнёт генерировать циклически повторяемую последовательность. В зависимости от выбранного начального состояния возможны 4 различных случая:

1. Начальное состояние может оказаться частью максимального периода.

2. Начальное состояние может перейти в последовательность максимального периода, после некоторой начальной задержки.

3. Начальное состояние может после начальной задержки породить последовательность нулей.

4. Начальное состояние может после начальной задержки породить последовательность единиц.

Последовательность Голда - псевдослучайная последовательность, образуемая путем сложения по модулю 2 двух псевдослучайных последовательностей.

Касами - тип псевдослучайных последовательностей. Применяются в CDMA. Значимость этих последовательностей происходит из-за их очень низкой взаимной корреляции. Код Касами длиныN = 2m − 1, где m - четное целое число, может быть получен, беря периодические выборки из М-

последовательности и выполняя суммирование по модулю 2 на циклически сдвигаемых последовательностях. Выборки берутся через каждые s = 2m / 2 + 1 элементов М-последовательности, чтобы сформировать периодическую последовательность и затем прибавляя эту последовательность постепенно к первоначальной М-последовательности по модулю 2, чтобы сформироватьs = 2m / 2 последовательностей Касами. Взаимная корреляционная функция двух последовательностей Касами принимает значения [-1, -s, s-2].

Ортогональные коды

Возможность адаптации системы к различным скоростям передачи обеспечивается за счет применения так называемых каналообразующих кодов (channelization code). Принцип их генерации можно проиллюстрировать (рис. 1) схемой кодового дерева для ортогональных кодов переменной длины

(Orthogonal Variable Spreading Factor, OVSF).

На каждом уровне этого кодового дерева определены свои кодовые слова, длина каждого из которых равна коэффициенту расширения спектра (SF). Полное кодовое дерево содержит 8 уровней (последний, восьмой, соответствует коэффициенту SF=256).

Структура кодового дерева такова, что на каждом последующем уровне удваивается возможное число каналообразующих кодов. Так, если на уровне 2 образуется только 2 кода (SF=2), то на уровне 3 генерируется уже 4 кодовых слова (SF=4) и т.д. Ансамбль кодов OVSF не является фиксированным, а зависит от коэффициента расширения SF, т. е. фактически от скорости передачи по каналу.

Проблема ортогональности.

Предположим, существует простая система с двумя пользователями и двумя путями распространения сигнала. Два пути обладают относительной задержкой в один чип. Ортогональные коды Уолша используются для распространения последовательности данных.

В этом случае приемник будет извлекать из канала два различных сигнала для каждого пользователя, соответствующие двум различным путям, относительная задержка между ними будет один чип.

Для каждого пользователя, приемник будет получать два сигнала из канала, полезный сигнал (ПСП синхронизирован с этим сигналом) и его версия с задержкой.

Результат сужения четырех принимаемых сигналов в случае двухканальной передачи двум пользователям будет:

B N (bit of interest) от сужения нужного сигнала пользователя;

- 0 из сужения ортогональных шумоподобных сигналов, отсутствие помехи из-за использования кодов Уолша;

- нежелательные условия, когда сужение является причиной задержки полезного сигнала и помехи.

Многолучевость.

Для кодовой последовательности с идеальными корреляционными свойствами, автокорреляционная функция дает ноль а выходе в интервале , где Tc – время чипа. Это значит, что полезный сигнал (основной путь) и задержанная версия этого сигнала на время, большее 2Tc , приняты на приемнике, тогда, с условиями когерентной демодуляции/сужения спектра, приемник определит задержанный сигнал как помеху. К тому же уровень мощности задержанного сигнала меньше, чем полезного в виду отражений при многолучевости, следовательно, задержанный сигнал в виде помехи «размазывается» по всей пропускной полосе, а приемник принимает лишь полезный сигнал.

Проблема «близкий - далекий».

Несмотря на высокую эффективность технологии CDMA у нее есть и ряд недостатков. Один из них - высокая чувствительность к разбросу мощностей мобильных станций. Наиболее сложная ситуация возникает вследствие проблемы «дальний-ближний» (far-near problem), когда мобильная станция, расположенная вблизи базовой, работает на большой мощности, создавая недопустимо высокий уровень помех при приеме других, «дальних» сигналов, что приводит к снижению пропускной способности системы в целом. Эта проблема существует у всех систем мобильной связи, однако наибольшие искажения сигнала возникают именно в CDMA-системах, работающих в общей полосе частот, в которых используются ортогональные шумоподобные сигналы. Если бы в этих системах отсутствовала регулировка мощности, то они существенно уступали бы по характеристикам сотовым сетям на базе TDMA. Поэтому ключевой проблемой в CDMA-системах можно считать индивидуальное управление мощностью каждой станции.

Детектирование.

Приемник имеет доступ к банку кодов, который хранит все коды, выделяемые на базовых станциях (БС). Для конкретного пользователя, БС знает, какой код ожидать и детектирование кода происходит путем сопоставления полученной последовательности с ожидаемым кодом. Операция корреляции осуществляется сужением, которое может выполняться в согласованном фильтре. Перед началом корреляции получатель должен знать точный момент времени. Синхронизация достигается при использовании пилот-сигнала, который расположен перед передаваемой информацией. Пилот-сигнал одинаков для всех пользователей. Когда синхронизация выполнена, согласованный фильтр начинает операцию корреляции: если корреляция выше заранее определенного порога, согласованный фильтр положительно определен пользователем.

Перемножение принятого сигнала и сигнала такого же источника псевдослучайного шума (ПСП), который использовался в передатчике, сжимает спектр полезного сигнала и одновременно расширяет спектр фонового шума и других источников интерференционных помех. Результирующий выигрыш в отношении сигнал/шум на выходе приемника есть функция отношения ширины полос широкополосного и базового сигналов: чем больше расширение спектра, тем больше выигрыш. Во временной области - это функция отношения скорости передачи цифрового потока в радиоканале к скорости передачи базового информационного сигнала. Для стандарта 1S-95 отношение составляет 128 раз, или 21 дБ. Это позволяет системе работать при уровне интерференционных помех, превышающих уровень полезного сигнала на 18 дБ, так как обработка сигнала на выходе приемника требует превышения уровня сигнала над уровнем помех всего на 3 дБ. В реальных условиях уровень помех значительно меньше. Кроме того, расширение спектра сигнала (до 1,23 МГц) можно рассматривать как применение методов частотного разнесения приема. Сигнал при распространении в радиотракте подвергается замираниям вследствие многолучевого характера распространения. В частотной области это явление можно представить как воздействие режекторного фильтра с изменяющейся шириной полосы режекции (обычно не более чем на 300 кГц). В стандарте AMPS это соответствует подавлению десяти каналов, а в системе CDMA подавляется лишь около 25% спектра сигнала, что не вызывает особых затруднений при восстановлении сигнала в приемнике.

Rake-приемник.

Оцифрованные выборки входных сигналов принимаются от входных каскадов ВЧ и представляются в виде квадратурных ветвей I и Q (т.е. в формате комплексного числа фильтра нижних частот на выходе приемника). Генераторы кода и коррелятор осуществляют сжатие и суммирование символов передачи данных пользователя. Устройство канала использует пилот-символы для оценки состояния канала, влияние которого затем будет скомпенсировано фазовращателем для принятых символов. Задержка компенсируется разницей во времени прибытия символов в каждый тракт. Далее сумматор Rake складывает компенсированные канальные символы, обеспечивая тем самым разнесение при многолучевом распространении как средство борьбы с замираниями.

Показан также согласованный фильтр, используемый для определения и обновления текущего профиля задержки при многолучевом распространении в канале. Этот измеренный и возможно усредненный профиль задержки при многолучевом распространении используется затем для сложения сигналов с выходов трактов приемника Rake с наибольшими пиковыми значениями.

В типичных реализациях приемник Rake, осуществляющий обработку со скоростью передачи чипов (коррелятор, генератор кодов, согласованный

СИСТЕМЫ С РАСШИРЕНИЕМ СПЕКТРА

Термин расширение спектра был использован в многочисленных военных и коммерческих системах связи. В системах с расширенным спектром каждый сигнал-переносчик сообщений требует значительно более широкой полосы радиочастот по сравнению с обычным модулированным сигналом. Более широкая полоса частот позволяет получить некоторые полезные свойства и характеристики, которые трудно достичь другими средствами.

Расширение спектра представляет собой метод формирования сигнала с расширенным спектром с помощью дополнительной ступени модуляции, обеспечивающей не только расширение спектра сигнала, но и ослабление его влияния на другие сигналы. Дополнительная модуляция никак не связана с передаваемым сообщением.

Широкополосные системы находят применение благодаря следующим потенциальным преимуществам:

Повышенной помехоустойчивости;

Возможности обеспечения кодового разделения каналов для многостанционного доступа на его основе в системах, использующих технологию CDMA;

Энергетической скрытности благодаря низкому уровню спектральной плотности;

Высокой разрешающей способности при измерениях расстояния;

Защищенности связи;

Способности противостоять воздействию преднамеренных помех;

Повышенной пропускной способности и спектральной эффективности в некоторых сотовых системах персональной связи;

Постепенному снижению качества связи при увеличении числа пользователей, одновременно занимающих один и тот же ВЧ канал;

Низкой стоимости при реализации;

Наличию современной элементной базы (интегральных микросхем).

Рисунок 6.1 – Структура системы с прямым расширением спектра

В соответствии с архитектурой и используемыми видами модуляции системы с расширенным спектром могут быть разделены на следующие основные группы.

С прямым расширением спектра на основе псевдослучайных последовательностей (ПСП), включая системы МДКРК,

С перестройкой рабочей частоты (с «прыгающей» частотой), включая системы МДКРК с медленной и быстрой перестройкой рабочей частоты,

Множественного доступа с расширенным спектром и контролем несущей (CSMA),

С перестройкой временного положения сигналов («прыгающим» временем),

С линейной частотной модуляцией сигналов (chip modulation),

Со смешанными методами расширения спектра.

Прямое расширение спектра с помощью псевдослучайных последовательностей

На рисунке 6.1 приведена концептуальная схема системы с прямым расширением спектра на основе псевдослучайных последовательностей (а - передатчик сигналов с PSK и с последующим спектра, б - передатчик с расширением спектра в полосе модулирующих частот, в - приемник). В первом модуляторе осуществляется фазовая манипуляция (PSK) сигнала промежуточной частоты двоичным цифровым сигналом передаваемого сообщения d(t) в формате без возвращения к нулю (NRZ) с частотой следования символов f b = 1/Т b .



В пределах одной соты системы подвижной радиосвязи, как правило, есть несколько абонентов, одновременно пользующихся связью, причем каждый из них использует одну и ту же несущую частоту fрч и занимает одну и ту же полосу частот Врч.

Процесс формирования сигналов с расширенным спектром в системах с многостанционным доступом происходит в два этапа: модуляция и расширение спектра (или вторичная модуляция посредством ПСП). Вторичная модуляция осуществляется с помощью идеальной операции перемножения g(t)s(t). При таком перемножении формируется амплитудно-модулированный двухполосный сигнал с подавленной несущей. Первый и второй модуляторы можно поменять местами без изменения потенциальных характеристик системы.

Сигнал g(t)s(t) с расширенным спектром преобразуется вверх до нужной радиочастоты. Хотя преобразование частоты вверх и вниз является для большинства систем практически необходимым процессом, все же этот этап не является определяющим. Поэтому в дальнейшем будем считать, что сигнал g(t)s(t) передается и принимается на промежуточной частоте, исключив из рассмотрения подсистемы преобразования частот вверх и вниз.

Таким образом, на вход приемника поступает сумма М независимых сигналов с расширенным спектром, занимающих одну и ту же полосу РЧ.

Концепция систем с расширенным спектром путем программной перестройки рабочей частоты во многом схожа с концепцией систем с прямым расширением спектра. Здесь генератор двоичной ПСП управляет синтезатором частот, с помощью которого осуществляется переход («перескок») с одной частоты на другую из множества доступных частот. Таким образом, здесь эффект расширения спектра достигается за счет псевдослучайной перестройки частоты несущей, значение которой выбирается из имеющихся частот f1,...,fN, где N может достигать значений несколько тысяч и более. Если скорость перестройки сообщений (скорость смены частот) превышает скорость передачи сообщений, то имеем систему с быстрой перестройкой частоты. Если скорость перестройки меньше скорости передачи сообщений, так что в интервале перестройки передается несколько битов, то имеем систему с медленной перестройкой частоты.

Если выбран ансамбль некоррелированных сигналов ПСП, то после операции сжатия спектра сохраняется лишь модулированный полезный сигнал. Все другие сигналы, являясь некоррелированными, сохраняют широкополосность и имеют ширину спектра, превышающую граничную полосу пропускания фильтра демодулятора. На рисунке 6.2 приведены упрощенные временные и спектральные диаграммы, качественно иллюстрирующие процессы расширения и сжатия спектра сигналов. В частности, в них отсутствует сигнал несущей.

Рисунок 6.2 - Диаграммы при расширении спектра

В системах с расширенным спектром путем перестройки рабочей частоты последняя сохраняется постоянной в течение каждого интервала перестройки, но изменяется скачком от интервала к интервалу. Частоты передачи формируются цифровым синтезатором частот, управляемым кодом («словами»), поступающим в последовательном либо параллельном виде и содержащим m двоичных символов (битов) Каждому m-битовому слову или его части соответствует одна из M = 2m частот. Хотя для осуществления перестройки частот имеется M = 2m, m = 2, 3, частот, но не все из них обязательно используются в конкретной системе. Системы с расширением спектра путем программной перестройки рабочей частоты подразделяются на системы с медленной, с быстрой и со средней скоростью перестройки.

В системах с медленной перестройкой скорость перестройки fh, меньше скорости передачи сообщений fb. Таким образом в интервале перестройки, прежде, чем осуществится переход на другую частоту, могут быть переданы два бита сообщения или более (в некоторых системах свыше 1000). В системах со средней скоростью перестройки скорость перестройки равна скорости передачи. Наибольшее распространение получили системы с быстрой и медленной перестройкой рабочей частоты.

Для синхронизации приемников при приеме сигналов с расширенным спектром может потребоваться три устройства синхронизации:

Фазовой синхронизации несущей (восстановления несущей);

Символьной синхронизации (восстановления тактовой частоты);

Временной синхронизации генераторов, формирующих кодовые или псевдослучайные последовательности.

Временная синхронизация обеспечивается в два этапа, в течение которых выполняются:

Поиск (первоначальная, грубая синхронизация);

Слежение (точная синхронизация).

На рисунке 6.3 изображены структурные схемы передающей и приемной частей системы с перестройкой частоты.

Рисунок 6.3 - Система с программной перестройкой частоты

В стандарте GSM применяется спектрально-эффективная гауссова частотная манипуляция с минимальным частотным сдвигом (GMSK). Манипуляция называется гауссовой потому, что последовательность ин­формационных битов до модулятора проходит через фильтр нижних час­тот (ФНЧ) с характеристикой Гаусса, что дает значительное уменьшение полосы частот излучаемого радиосигнала. Формирование GMSK радио­сигнала осуществляется таким образом, что на интервале одного инфор­мационного бита фаза несущей изменяется на 90°. Это наименее воз­можное изменение фазы, распознаваемое при данном типе модуляции. Непрерывное изменение фазы синусоидального сигнала дает в результате частотную модуляцию с дискретным изменением частоты. Применение фильтра Гаусса позволяет при дискретном изменении частоты получить «гладкие переходы». В стандарте GSM применяется GMSK-модуляция с величиной нормированной полосы ВТ = 0,3, где В - ширина полосы фильтра по уровню -3 дБ, Т - длительность 1 бита цифрового сообщения. Функциональная схема модулятора показана на рисунке 6.4.

Рисунок 6.4 - Функциональная схема модулятора

Основой формирователя GMSK-сигнала является квадратурный (1/Q) модулятор. Схема состоит из двух умножителей и одного сумматора. За­дача этой схемы заключается в том, чтобы обеспечить непрерывную точ­ную фазовую модуляцию. Один умножитель изменяет амплитуду синусоидального, а второй – косинусоидального колебания. Входной сигнал до умножителя разбивается на две квадратурные составляющие. Разложение происходит в двух обозначенных «sin» и «cos» блоках.

Диаграммы, иллюстрирующие формирование GMSK-сигнала, пока­заны на рисунке 4.9.

Модуляцию GMSK отличают следующие свойства, предпочтитель­ные для мобильной связи:

Постоянную по уровню огибающую, что позволяет использовать эффективные передающие устройства с усилителями мощности в режиме класса С;

Компактный спектр на выходе усилителя мощности передающего устройства, что обеспечивает низкий уровень внеполосного излу­чения;

Хорошие характеристики помехоустойчивости канала связи.

Рисунок 6.5 - Формирование GMSK-сигнала

Обработка речи. Обработка речи в стандарте GSM осуществляется с целью обеспече­ния высокого качества передаваемых сообщений и реализации дополни­тельных сервисных возможностей. Обработка речи осуществляется в рамках принятой системы преры­вистой передачи речи(Discontinuous Transmission - DTX), которая обес­печивает включение передатчика, когда пользователь начинает разговор, и отключает его в паузах и в конце разговора. DTX управляется детек­тором активности речи (Voice Activity Detector - VAD), который обес­печивает обнаружение и выделение интервалов передачи речи с шумом и шума без речи даже в тех случаях, когда уровень шума соизмерим с уровнем речи. В состав системы прерывистой передачи речи входит так­же устройство формирования комфортного шума, который включается и прослушивается в паузах речи, когда передатчик отключен. Экспери­ментально доказано, что отключение фонового шума на выходе прием­ника в паузах при отключении передатчика раздражает абонента и сни­жает разборчивость речи, поэтому применение комфортного шума в пау­зах считается необходимым.. DTX-процесс в приемнике предполагает интерполяцию фрагментов речи, потерянных из-за ошибок в канале.

Беспроводные технологии обеспечивают безопасную и надежную связь с удаленными участками производства, когда возможность использования кабельной продукции ограничена. Для организации технического обслуживания беспроводные устройства осуществляют контроль состояния насосов и механизмов, передают данные удаленных станций мониторинга сточных вод и систем ввода/вывода.

В одном из решений беспроводная система получает показания метеостанции и показания расхода сточных вод химического производства. Заводская метеостанция располагается в 2.5 километрах от главного пульта управления, и в ней установлен регистратор, собирающий данные анемометра (скорость ветра), термометра и гигрометра. Регистратор подключен к беспроводному прибору WLM Remote RF компании Moore Industries, работающему на частоте 900 МГц, используя технологию смены рабочей частоты с расширением спектра (FHSS) , передает данные с помощью директорной антенны, установленной на высоком кронштейне неподалеку от метеостанции. Серьезных проблем при эксплуатации пока не возникало.

Казалось, что организовать беспроводную связь со станцией мониторинга сточных вод невозможно. Хотя расстояние от станции до центрального пульта управления всего лишь 500м, радиочастотный сигнал должен был пройти через четырехэтажное здание котельной. Тем не менее, перед монтажом были проведены испытания, и радиосеть работала без проблем. Главный урок из всего этого – беспроводная технология работает даже там, где, как вам казалось, работать не должна. Все что необходимо сделать – протестировать систему.

Существует множество радиотехнологий. Понимание механизмов их функционирования необходимо для выбора лучшего решения для конкретного приложения. Беспроводная сеть может быть лицензируемой или нелицензируемой, с Ethernet или последовательным интерфейсом, с узким диапазоном или расширенным спектром, с безопасным или открытым протоколом, Wi-Fi … список можно продолжать. Эта статья – введение в беспроводную технологию.

Диапазон радиочастот

Диапазон от 9 килогерц (кГц) до тысяч гигагерц (ГГц) может использоваться для организации беспроводной связи. Частоты выше – инфракрасный спектр, спектр освещения, рентгеновские лучи, и т.д. Так как радиочастоты – ресурс ограниченный, используемый теле- и радиостанциями, мобильными телефонами и другими беспроводными устройствами, диапазоны, которые могут использоваться для определенных типов коммуникаций и передачи данных, определяются правительственными учреждениями.

В Соединенных Штатах, Федеральная Комиссия Связи (FCC) распределяет частоты между неправительственными пользователями. FCC определила, что промышленное, научное, и медицинское оборудование должно работать в диапазонах 902-928 МГц, 2400-2483.5 МГц, и 5725-5875 МГц с ограничениями по силе сигнала, мощности и другим параметрам радиопередачи. Эти диапазоны являются нелицензируемыми и могут использоваться свободно в рамках предписаний FCC. Другие диапазоны в спектре могут использоваться после предоставления лицензии. В таблице 1 указаны диапазоны спектра радиочастот и сферы их применения.


Источник: http://encyclopedia.thefreedictionary.com/radio%20frequency

Лицензируемые или нелицензируемые частоты

Лицензия, предоставляемая Федеральной комиссией связи, необходима для работы на лицензируемой частоте. В идеале эти частоты помехоустойчивы, и в случае возникновения помех, нарушитель может быть привлечен к юридической ответственности. Недостатки – сложная и длительная процедура получения лицензии, невозможность приобретения уже доступных устройств, так как они должны быть изготовлены для работы на лицензируемой частоте, и, конечно, затраты на получение лицензии.

Под нелицензируемой частотой понимается частота, определенная Федеральной Комиссией Связи, как свободная для использования без необходимости регистрации и авторизации. В зависимости от места расположения системы существуют ограничения по мощности сигнала. Например, в США в 900 мегагерцовом диапазоне максимальная мощность – 1 ватт или 4 ватта EIRP (эффективной изотропической мощности излучения).

Преимущества использования нелицензируемых частот очевидны: не нужно тратить время и деньги на получение лицензии; многие производители поставляют на рынок продукцию, поддерживающую эти частоты, низкая стоимость ввода в эксплуатацию из-за отсутствия затрат на лицензию. Недостатки лежат в самой идее нелицензируемого диапазона: на одной частоте могут работать одновременно несколько систем, что приводит к возникновению помех и потерям при передаче данных. В этом случае возникает необходимость использования технологии расширения спектра. Передатчики с расширяемым спектром очень эффективно справляются с возникающими помехами и работают даже в условиях радиочастотных шумов.

Системы с расширяемым спектром

Расширяемый спектр – это метод, расширяющий радиочастотный сигнал в широкий диапазон частот при низкой мощности, тогда как при передаче через узкополосный сигнал вся мощность концентрируется на одной частоте. Узкополосным называется сигнал, занимающий небольшой диапазон радиочастотного спектра. Широкополосный сигнал занимает гораздо больший сектор. Две самых распространенных технологии расширения спектра: скачкообразная смена рабочей частоты с расширением спектра (FHSS) и расширение спектра сигнала прямой последовательностью (DSSS).

Как понятно из определения, в устройствах скачкообразного изменения частоты рабочая частота передатчика изменяется через определенный интервал времени. Преимущества скачкообразного изменения очевидны: поскольку передатчик меняет частоту передачи данных настолько часто, что только настроенный по такому же алгоритму приемник способен принять информацию. Приемник должен иметь аналогичную псевдослучайную последовательность принимаемых частот, чтобы в нужное время получить сигнал передатчика на правильной частоте. На рисунке 1 показано как частота сигнала изменяется во времени. Каждый скачкообразный переход имеет одинаковую мощность и время выдержки (время работы на канале). На рисунке 2 зависимости время-частота, видно, что скачок происходит через равные промежутки времени. Последовательность скачков является псевдослучайной.

Рисунок 1. В результате «скачков» несущая частота изменяется. Мощность сигнала остается постоянной.

DSSS объединяет сигнал данных с последовательностью символов, известных как ‘чипы’ – таким образом “расширяя” сигнал по большей полосе. Другими словами, исходный сигнал умножается на сигнал шума, сгенерированный псевдослучайной последовательностью положительного и отрицательного битов. Приемник, умножает полученный сигнал на ту же последовательность, получая исходную информацию (т.к. 1 x 1=1 и -1 x-1 = 1).

Когда сигнал “расширен”, мощность исходного узкополосного сигнала распределяется по широкому диапазону, уменьшая мощность на каждой конкретной частоте (т.н. низкая плотность мощности). На рисунке 3 показан сигнал на узкой части радиочастотного спектра. На рисунке 4, сигнал, расширенный на большую часть спектра, имеет такую же суммарную мощность, но меньшую мощность на каждую частоту. Так как расширение уменьшает силу сигнала на отдельных участках спектра, сигнал может восприниматься как шум. Приемник должен распознать и демодулировать полученный сигнал, очистив исходный сигнал от добавленных «чипов».

Технологии FHSS и DSSS широко используются в промышленности. В зависимости от каждого конкретного случая, та или иная технология может быть лучшим решением. Вместо дискуссий, какая из них лучше, гораздо важнее понимать различия и выбрать технологию, подходящую именно для вашего приложения. Вообще, на выбор влияют следующие характеристики:

    Пропускная способность

    Коллокация

    Интерференция

    Дальность связи

    Безопасность

    Пропускная способность

Пропускная способность – объем данных передаваемых или принимаемых системой за одну секунду. Это один из самых важных факторов при выборе необходимой технологии. DSSS имеет более высокую пропускную способность чем FHSS из-за более эффективного использования полосы частот и работе на большем диапазоне. Для большинства промышленных систем распределенного ввода-вывода данных низкая пропускная способность FHSS не является серьезной проблемой. Однако если увеличивается размер сети или скорость передачи дан ных, этому показателю уделяется боль шее внимание. Большинство радиопередатчиков FHSS имеют пропускную способность 50-115 кбит/с для сети Ethernet. DSSS работает с пропускной способностью 1-10 Мбит/с. Хотя DSSS-передатчики имеют более высокую пропускную способность, чем FHSS аналоги. Найти DSSS-устройство, обеспечивающее аналогичную сетевую безопасность и дальность работы, необхо димые для промышленного производства и SCADA-систем, не так просто.

В отличие от FHSS-передатчиков, работающих с диапазоном 26 мегагерц на базовой частоте 900 мегагерц (902- 928 МГц) и DSSS-передатчиков с диапа зоном 22 МГц на частоте 2.4 ГГц, радиопе редатчики, использующие лицензируемые частоты, ограничены спектром 12.5 кГц. Естественно, так как ширина спектра лимитирована, пропускная способность также ограничена. Большинство пере датчиков, работающих на лицензируемой частоте, предлагает пропускную способ ность 6400 – 19200 бит в секунду.

Коллокация

Под коллокацией понимается возмож ность работы нескольких радиосетей в не посредственной близости друг от друга. Технология DSSS не позволяет несколь- ким радиосетям функционировать по со седству, так как сигнал расширяется по одной полосе частот. Например, в пределах диапазона 2.4 ГГц ISM (промышленный, научный и медицинский диапазон), мож- но использовать только три DSSS канала. Каждый канал расширен до 22 мегагерц спектра, что позволяет работать без пере крытия частот только трем сетям одновре менно.

C другой стороны, благодаря исполь зованию различной последовательности скачков, на одном диапазоне частот могут функционировать несколько FHSS сетей. Последовательность скачков, при которой различные частоты используются в разное время на одной полосе частот, так же называется ортогональной последовательностью. В FHSS применяются программы ортогональной последовательности, обеспечивающие работу нескольких сетей без создания помех. Это – огромное преимущество при разработке больших сетей и необходимости разделения коммуникаций. Большинство лабораторных исследований показывает, что одновременно могут работать до 15 сетей FHSS и только 3 сети DSSS.

Очевидно, по причине работы на одном 12.5 мегагерцовом диапазоне спектра, узкополосные радиостанции не могут быть расположены слишком близко друг к другу.

Интерференция

Интерференция – радиошумы в соседней или той же части радиочастотного спектра. Наложение двух сигналов может генерировать новую радиоволну или привести к потерям данных, передаваемых рабочим сигналом. Технология расширения спектра очень хорошо справляется с возникающими шумами, хотя различные технологии решают эту проблему по-разному. Когда приемник DSSS обнаруживает узкополосный шум, происходит умножение полученного сигнала на значение «чипа» для восстановления исходного сообщения. Тем самым исходный первоначальный сигнал преобразовывается в узкополосный сигнал с большой мощностью; помехи, как широкополосный сигнал малой мощности, игнорируются.

В своей основе механизм, который размещает сигнал DSSS ниже уровня собственных шумов радиосети, позволяет игнорировать узкополосную интерференцию при демодуляции сигнала. Поэтому DSSS очень хорошо работает при сторонних шумах, однако если помеха имеет большую мощность, могут возникнуть серьезные проблемы, т.к. демодуляция не способна уменьшить сигнал помехи ниже мощности исходного сигнала.

Учитывая, что FHSS работает с полосой 83.5 МГц на частоте 4 ГГц и производит сигналы высокой мощности на определенных частотах (аналогично генерации синхронизированных пакетов данных на узкой полосе), тем самым, избегая помех, если узкополосный генератор шумов не работает на одной из используемых частот. Узкополосные шумы, в худшем случае, блокируют несколько скачков, которые система может компенсировать, передав сообщение еще раз на другой частоте. Кроме того, правила Федеральной комиссии связи требуют минимального разделения частоты в последовательности скачков, поэтому возможность создания помех узкополосным сигналом минимизирована.

В случае широкополосных помех, DSSS не работает так же надежно. Поскольку DSSS расширяет сразу весь сигнал на 22 МГц полосы с гораздо меньшей мощностью, при наложении на эти 22 мегагерца шума или более мощного сигнала, могут блокироваться до 100 % передачи DSSS, и только 25 % передачи FHSS. В этом случае, эффективность FHSS падает, но полной потери данных не происходит.

На лицензируемых частотах используется очень узкая полоса, поэтому даже небольшие помехи могут вызвать потерю информации. В этом случае направленные антенны и полосовые фильтры могут использоваться для организации непрерывной коммуникации, и в отношении организатора помех могут применяться юридические меры.

Радиоустройства стандарта 802.11 более подвержены воздействию помех, так как в этом диапазоне работают очень многие приборы. Вы замечали, какие помехи возникают в беспроводном телефоне при работе микроволновой печи? Оба устройства работают в 2.4 ГГц диапазоне, как и остальная часть устройств стандарта 802.11. При использовании таких передатчиков, сетевая безопасность становится серьезным предметом для беспокойства.

Если приемник определенного передатчика расположен к другому передатчику ближе, чем к собственному, возникает проблема взаимодействия приемника с этими передатчиками. Соседние передатчики могут забивать канал приемника посторонними сигналами высокой мощности. В такой ситуации большинство систем DSSS выйдут из строя. В такой же ситуации, несколько скачков FHSS-системы будут заблокированы, но в целом не нарушат работу сети. В случае системы работающей на лицензируемой частоте, эффективность работы системы будет зависеть от частоты постороннего сигнала. Если частота этих сигналов близка или аналогична частоте системы, ваш сигнал будет глушиться, что дает основания для юридического преследования нарушителя, если он не имеет аналогичную лицензию

Дальность связи

Дальность связи определяется возможностью организации коммуникаций, т.е. силой радиочастотной связи между передатчиком и приемником и расстоянием, на котором они могут поддерживать надежное соединение. При работе на одной мощности и с использованием одинакового алгоритма модуляции, радиопередатчик, работающий на частоте 900 МГц, обеспечивает более надежную связь, чем передатчик на 2.4 ГГц. При увеличении частоты радиочастотного спектра, дальность передачи данных уменьшается, при условии, что все остальные параметры остаются неизменными. Способность проникать через стены и объекты с увеличением частоты также уменьшается. Верхние частоты в спектре демонстрируют отражающие свойства. Например, радиоволна 2.4 ГГц может отражаться от стен зданий и туннелей. Это может использоваться для распространения сигнала на большие расстояния. Возможные сложности связаны с возникновением многолучевого распространения или полным отсутствием сигнала, из-за обратного отражения.

Федеральная комиссия связи ограничивает выходную мощность радиопередатчиков с расширенным спектром. DSSS последовательно передает данные с низкой мощностью, как показано выше, и попадает в ограничения Федеральной комиссии связи. Это ограничивает расстояние передачи радиопередатчиков DSSS, и таким образом делает их неподходящими для промышленного рынка. FHSS-передатчики, с другой стороны, передают сигналы высокой мощности на определенных частотах в последовательности скачков, но средняя мощность остается низкой, поэтому соответствует предписаниям. FHSS-сигнал передается с большей мощностью, чем сигнал DSSS, что позволяет работать на больших расстояниях. Большинство передатчиков FHSS могут передавать данные более чем на 20 км или еще большие расстояния, используя антенны с большим коэффициентом усиления.

Радиопередатчики стандарта 802.11, доступны в формате DSSS и в FHSS. Они работают на широком диапазоне частот и со скоростью передачи данных до 54 Мбит/с. Но необходимо отметить, что указанная пропускная способность, очень сильно уменьшается с ростом расстояния между радиомодемами. Например, расстояние 100 м уменьшает скорость с 54 Мбит/с до 2 Мбит/с. Это идеально для небольших офисных или домашних приложений, но не для промышленных приложений, где необходимо передавать данные на несколько километров.

Так как узкополосные радиопередатчики работают на низких частотах, они могут быть хорошим решением в случае, если FHSS не могут обеспечить необходимую дальность передачи. Потребность в использовании узкополосных лицензируемых частот, возникает, когда нужно передать данные на большое расстояние, или передача должна проходить ближе к поверхности Земли, так как организация связи в зоне прямой видимости невозможна.

Безопасность

Так как сигнал DSSS имеет очень маленькую мощность, хакерам не так просто его обнаружить. Одно из главных достоинств DSSS – способность уменьшить энергию сигнала, распределяя мощность первоначального узкополосного сигнала по большей полосе частот, уменьшая в результате спектральную плотность мощности. Это может снизить уровень сигнала до уровня собственных шумов радиосети, таким образом, делая его “невидимым” для потенциальных злоумышленников. В то же время, если «чип», известен или имеет небольшую длину, обнаружить передачу DSSS и восстановить сигнал намного легче, поскольку он имеет ограниченное число несущих частот. Многие системы DSSS предлагают шифрование как функцию безопасности, хотя это увеличивает стоимость системы и уменьшает эффективность работы, вследствие использования дополнительной мощности на кодирование сигнала.

Для успешной настройки на работающую FHSS-систему, злоумышленник должен знать используемые частоты, последовательность скачков, время работы, и метод шифрования. Учитывая, что для диапазона 2.4 ГГц время работы на канале 400 мс и более 75 используемых каналов, почти невозможно обнаружить и следовать за сигналом FHSS, если приемник не сконфигурирован на ту же последовательность скачков. Кроме того, большинство систем FHSS поставляются с расширенными функциями безопасности, такими как динамическое шифрование ключа и контроль циклического избыточного кода.

Сегодня беспроводные локальные сети (WLAN) становятся все более и более популярными. Они используют стандарт 802.11, открытый протокол, разработанный IEEE. Wi-Fi – эмблема стандарта, используемая Ассоциацией контроля совместимости с беспроводным Ethernet (WECA), для сертификации продуктов 802.11. Хотя промышленные FHSS-устройства не поддерживают стандарт Wi-Fi, и поэтому не совместимы с WLAN, при их совместной работе, из-за работы в одной полосе частот, могут возникать помехи. Так как большинство продуктов Wi-Fi работают в 2.4 или 5 гигагерцовых диапазонах, хорошей идеей может оказаться использование, с разрешения руководящего органа, частоты 900 МГц, (в Европе допускается работа только на 2.4 ГГц). Это также обеспечит дополнительную защиту от радиочастотных снифферов (программ, используемых хакерами) применяемых в более популярном 2.4 гигагерцовом диапазоне.

Сетевая безопасность беспроводных технологий является одним из самых обсуждаемых вопросов. Последние статьи о “машине, управляемой хакерами” заставили потенциальных и существующих потребителей засомневаться в эффективности защиты от несанкционированных проникновений в беспроводную сеть. Необходимо понимать, что стандарты 802.11 – стандарты открытые, поэтому легко могут быть взломаны.

Причиной возникшей неразберихи в вопросах безопасности является нечеткое понимание технологии работы различных беспроводных систем. На сегодняшний момент, Wi-Fi (802.11a, b, и g), возможно является лучшей технологией для многих IT-приложений, дома и в небольшом офисе. 802.11 – открытый стандарт, поэтому квалифицированному хакеру достаточно просто обойти защиту сети и перехватить управление системой.

Так как же пользователи беспроводной технологии защищают себя от незаконных проникновений? Во многих приложениях на базе стандарта 802.11 безопасность практически не обеспечивается, и пользователь должен хорошо разбираться в настройке виртуальных частных сетей (VPN), или других сетей безопасности, чтобы защитить себя от нападений. Устройства других стандартов используют протоколы компаний-производителей для защиты сети от злоумышленников, наряду с применением элементов обеспечения безопасности, присущих технологии расширения спектра.

Представление о том, что сети, работающие на лицензируемой частоте, обеспечивают большую безопасность, ошибочно. Если частота известна, можно настроиться на сеть, и подобрав пароль и взломав систему шифрования, получить полный контроль. Все преимущества систем с расширяемым спектром отсутствуют, так как лицензируемые частоты работают в узкой полосе. Скачкообразная смена рабочей частоты с расширением спектра в настоящий момент является самой надежной и безопасной беспроводной технологией.

Ячеистая радиосеть

Технология ячеистой радиосети основана на способности радиопередатчиков взаимодействовать друг с другом. Это решение появилось не так давно и еще не столь широко используется в промышленности. Существует ряд проблем, с которыми разработчики ячеистой технологии пока не могут справиться, например, большая задержка передачи данных и низкая пропускная способность. Концепция ячеистой сети не нова. Интернет и телефонные сети – превосходный пример ячеистой сети в проводном мире, в этих сетях каждый узел может инициировать коммуникацию с другим узлом и обмениваться информацией

В беспроводном мире, полоса пропускания, ограниченный спектр радиочастот и помехи – только часть проблем, с которыми приходится сталкиваться ячеистым сетям. Сейчас эти сети все еще исследуются и развиваются. Новейшие ячеистые технологии, такие как гибридная и структурная ячеистая сети появились совсем недавно. В настоящее время все еще недостаточно данных, подтверждающих необходимую для использования в тяжелых промышленных условиях надежность и безопасность ячеистых сетей,.

Резюме

В заключении можно сказать, что выбор радио-технологии зависит от требований каждого конкретного приложения. Для большинства промышленных производств лучшим решением являются радиоустройства со скачкообразной сменой рабочей частоты с расширением спектра (рисунок 5), благодаря более низкой стоимости в сравнении с радиостанциями, работающими на лицензируемой частоте. Когда большие расстояния ограничивают использование FHSS-узлов с повторителями, для лучшей связи оптимальным решением представляется использование передатчиков, работающих в узкой полосе лицензируемой частоты. Стоимость лицензирования может оказаться меньше стоимость установки дополнительных повторителей FHSS-системы.

Одно из самых простых решений – пригласить одного или нескольких представителей компании-производителя беспроводных устройств на ваш завод и оценить возможность использования предлагаемой технологии. Например, Moore Industries установили на предприятии, упомянутом выше, в качестве «демо-версии» один из своих Wireless Link Module (WLM), и смонтировали всенаправленные антенны и передатчики на удаленных станциях. Испытания показали, что даже четырехэтажное здание не является помехой для беспроводных коммуникаций.

Поверьте, возможности современной беспроводной технологии могут удивить вас.

Приложение

Определения

Полоса Частота или диапазон частот
Диапазон частот Диапазон частот, или длина радиочастотного спектра на котором передается сигнал.
Широкополосный канал Радиоканал с шириной полосы пропускания от 1.5 Мбит/с на полосе 1 МГц
Коллокация Работа нескольких радиосетей одновременно в одной зоне.
Демодуляция Процесс получения и выделения первоначального цифрового сигнала из модулированной аналоговой несущей волны
Технология расширения спектра сигнала прямой последовательностью (DSSS) Технология модуляции, объединяющая информационный сигнал с высокоскоростной битовой последовательностью, известный как «чип», тем самым «расширяя» сигнал на большую полосу.
Эффективная излучаемая мощность (EIRP) Мощность сигнала излучаемая антенной. Равна мощность передатчика минус потери при передаче (вызванные коаксиальным кабелем, коннекторами, молниеотводами) плюс усиление антенны
Европейский институт стандартизации электросвязи (ETSI) Европейский регулирующий орган по телекоммуникациям.
Федеральная комиссия связи (FCC) Регулирующий орган США по коммуникациям
Скачкообразная смена рабочей частоты с расширением спектра (FHSS) Техника модуляции, при которой частота передачи (несущая частота) изменяется в псевдослучайной последовательности («скачет») через регулярные временные интервалы.
Промышленный, научный и медицинский (ISM) диапазоны Диапазоны 902-928 MГц, 2400-2483.5 MГц, и 5725-5875 MГц соответственно
Интерференция Наложение двух и более радиоволн, работающих на соседних или общих частотах, приводящее к появлению дополнительной волновой структуры
Международный союз электросвязи (ITU) Регулирующий орган ООН по телекоммуникациям
Линия прямой видимости (LOS) Канал связи между передающей и принимающей антеннами, не имеющий физический препятствий, таких как деревья или здания.
Баланс мощности Расчет, принимающий во внимание работу всех компонентов, усиливающих и ослабляющих радиосигнал (передатчики, антенны, кабели и т.д.) для определения максимальной дистанции для организации надежной радиосвязи
Многолучевое распространение Процесс возникновения нескольких каналов распространения сигнала, отличных от первоначального
Узкополосный канал Радиоканал с шириной полосы пропускания от 50 бит/с до 64 кбит/с
Национальная Администрация по Телекоммуникациям и Информации (NTIA) Регулирующий орган, распределяющий радиочастоты между правительственными организациями США
Всенаправленная антенна Антенна, получающая и передающая сигналы во всех направлениях
Спектральная плотность мощности (PSD) Отношение общей мощность полосы к ширине полосы
Расширение спектра Метод расширения радиочастотного сигнала по широкой полосе частот с низкой мощностью, в отличии от концентрации всей мощности на единичной частоте, в случае передачи данных по узкополосному каналу.
Пропускная способность Объем данных, получаемых системой каждую секунду
Трансивер Радиопередатчик и радиоприемник в общем корпусе
Виртуальная частная сеть (VPN) Сеть для закрытых коммуникаций, использующая криптографическое туннелирование для обеспечения безопасности незащищенных сетей
Протокол шифрования в беспроводной связи (WEP) Часть стандарта IEEE 802.11 определяющая требования обеспечения безопасности беспроводной сети
Ассоциация контроля совместимости с беспроводным Ethernet (WECA) Сертифицирующий орган технологии WLAN
Wireless Fidelity (Wi-Fi) Логотип стандарта, используемый WECA для обозначения сертифицированных продуктов стандарта 802.11
Wireless Local Area Networks (WLAN) Компьютерная сеть на базе радиоустройств
Директорная антенна Антенна, отправляющая и получающая сигналы только в узком секторе