Часто задаваемые вопросы по динамической обработке аудио сигнала. Динамический звук в разрушаемых уровнях Rainbow Six: Siege

Партнерский материал

Введение

Одно из пяти чувств, доступных человеку, – слух. С помощью него мы слышим окружающий мир.

У большинства из нас есть звуки, которые мы помним из детства. У кого-то это голоса родных и близких, или скрип деревянных половиц в бабушкином доме, или, может быть, это стук колес поезда по железной дороге, которая была рядом. У каждого они будут своими.

Что вы ощущаете, когда слышите или вспоминаете звуки, знакомые из детства? Радость, ностальгию, грусть, тепло? Звук способен передавать эмоции, настроение, побуждать к действию или, наоборот, успокаивать и расслаблять.

Кроме этого, звук используется в самых разных сферах человеческой жизни – в медицине, в обработке материалов, в исследованиях морских глубин и многих, многих других.

При этом, с точки зрения физики, это всего лишь природное явление – колебания упругой среды, а значит, как и у любого природного явления, у звука есть характеристики, некоторые из которых можно измерить, другие – же только услышать.

Выбирая музыкальную аппаратуру, читая обзоры и описания, мы часто сталкиваемся с большим количеством этих самых характеристик и терминов, которые авторы используют без соответствующих уточнений и пояснений. И если некоторые из них понятны и очевидны каждому, то другие для неподготовленного человека не несут в себе никакого смысла. Поэтому мы решили простым языком рассказать вам про эти непонятные и сложные, на первый взгляд, слова.

Если вспомнить своё знакомство с портативным звуком, то началось оно довольно давно, и был это вот такой кассетный плеер, подаренный мне родителями на Новый год.

Он иногда жевал пленку, и тогда приходилось распутывать ее скрепками и крепким словом. Он поглощал батарейки с аппетитом, которому позавидовал бы Робин Бобин Барабек (который скушал сорок человек), а значит, и мои, на тот момент весьма скудные сбережения обычного школьника. Но все неудобства меркли по сравнению с главным плюсом - плеер давал непередаваемое ощущение свободы и радости! Так я «заболел» звуком, который можно взять с собой.

Однако я погрешу против истины, если скажу, что с того времени всегда был неразлучен с музыкой. Были периоды, когда было не до музыки, когда в приоритете было совсем другое. Однако все это время я старался быть в курсе происходящего в мире портативного аудио, и, так сказать, держать руку на пульсе.

Когда появились смартфоны, оказалось, что эти мультимедийные комбайны умеют не только звонить и обрабатывать огромные объемы данных, но, что было намного важней для меня, хранить и воспроизводить огромное количество музыки.

Первый раз я «подсел» на «телефонный» звук, когда послушал, как звучит один из музыкальных смартфонов, в котором были использованы самые передовые на тот момент компоненты обработки звука (до этого, признаюсь, не воспринимал всерьез смартфон в качестве устройства для прослушивания музыки). Я очень хотел себе этот телефон, но не мог себе его позволить. При этом я начал следить за модельным рядом этой компании, зарекомендовавшей себя в моих глазах как производитель качественного звука, однако получалось так, что наши с ней пути постоянно расходились. С того времени я владел различной музыкальной техникой, но не перестаю искать для себя по-настоящему музыкальный смартфон, который бы мог по праву носить такое имя.

Характеристики

Среди всех характеристик звука профессионал с ходу может огорошить вас десятком определений и параметров, на которые, по его мнению, вы обязательно, ну вот прям непременно должны обратить внимание и, не дай бог, какой-то параметр не будет учтен – беда…

Скажу сразу, я не сторонник подобного подхода. Ведь обычно мы выбираем оборудование не для «международного конкурса аудиофилов», а всё же для себя любимых, для души.

Все мы разные, и все мы ценим в звуке что-то свое. Кому-то нравится звук «побасовее», кому-то, наоборот, чистый и прозрачный, для кого-то окажутся важными определенные параметры, а для кого-то – совершенно другие. Все ли параметры одинаково важны и какими они бывают? Давайте разбираться.

Случалось ли вам сталкиваться с тем, что одни наушники играют на вашем телефоне так, что приходится делать тише, а другие, наоборот, заставляют выкручивать громкость на полную и всё равно не хватает?

В портативной технике немаловажную роль в этом играет сопротивление. Зачастую именно по значению этого параметра можно понять, будет ли вам хватать громкости.

Сопротивление

Измеряется в Омах (Ом).

Георг Симон Ом - немецкий физик, вывел и подтвердил на опыте закон, выражающий связь между силой тока в цепи, напряжением и сопротивлением (известен как закон Ома ).

Данный параметр еще называют импеданс.

Значение почти всегда бывает указано на коробке либо в инструкции к аппаратуре.

Бытует мнение, что высокоомные наушники играют тихо, а низкоомные наушники - громко, и для высокоомных наушников нужен источник звука помощнее, а низкоомным хватит и смартфона. Также часто можно услышать выражение – не всякий плеер сможет «раскачать» эти наушники.

Запомните, на одном и том же источнике низкоомные наушники будут звучать громче. Несмотря на то, что с точки зрения физики это не совсем верно и есть нюансы, фактически это самый простой способ описать значение этого параметра.

Для портативной техники (портативные плееры, смартфоны) чаще всего выпускаются наушники с сопротивлением 32 Ом и ниже, однако следует иметь в виду, что для различного типа наушников низким будет считаться разное сопротивление. Так, для полноразмерных наушников импеданс до 100 Ом считается низкоомным, выше 100 Ом – высокоомным. Для наушников же внутриканального типа («затычки» или вкладыши) показатель сопротивления до 32 Ом считается низкоомным, выше 32 ОМ – высокоомным. Поэтому, выбирая наушники, обращайте внимание не только на само значение сопротивления, но и на тип наушников.

Важно : чем выше сопротивление наушников, тем чище будет звук и тем дольше будет работать плеер или смартфон в режиме воспроизведения, т.к. высокоомные наушники потребляют меньше тока, а это, в свою очередь, означает меньше искажений сигнала.

АЧХ (амплитудно-частотная характеристика)

Часто в обсуждении того или иного устройства, будь то наушники, колонки или автомобильный сабвуфер, можно услышать характеристику - «качает/не качает». Узнать, будет ли устройство, например, «качать» либо больше подойдет для любителей вокала, можно и не слушая его.

Для этого достаточно найти в описании устройства его АЧХ.

График позволяет понять, как устройство воспроизводит и другие частоты. При этом чем меньше перепадов, тем точнее аппаратура может передать исходный звук, а значит, тем ближе звук получится к оригиналу.

Если в первой трети нет ярко выраженных «горбов», то значит наушники не сильно «басовитые», а если наоборот, то они будут «качать», то же относится и к другим участкам АЧХ.

Таким образом, глядя на АЧХ, мы можем понять, какой у аппаратуры тембральный/тональный баланс. С одной стороны, можно подумать, что идеальным балансом будет считаться прямая линия, но так ли это?

Давайте попробуем разобраться подробнее. Так уж получилось, что человек для общения использует в основном средние частоты (СЧ) и, соответственно, лучше всего способен различать именно эту полосу частот. Если сделать устройство с «идеальным» балансом в виде прямой линии, боюсь, что прослушивание музыки на таком оборудовании вам не очень понравится, так как скорее всего высокие и низкие частоты будут звучать не так хорошо, как средние. Выход – искать свой баланс с учетом физиологических особенностей слуха и назначения оборудования. Для голоса один баланс, для классической музыки – другой, для танцевальной – третий.

По графику выше видно, какой баланс у данных наушников. Низкие и высокие частоты выражены больше, в отличие от средних, которых меньше, что характерно для большинства продуктов. Однако наличие «горба» на низких частотах не обязательно означает качество этих самых низких частот, так как они могут оказаться хоть и в большом количестве, но плохого качества – бубнящие, гудящие.

На итоговый результат будет влиять множество параметров, начиная от того, насколько грамотно была рассчитана геометрия корпуса, и заканчивая тем, из каких материалов сделаны элементы конструкции, и узнать это зачастую можно, только послушав наушники.

Чтобы до прослушивания примерно представлять, насколько качественным будет наш звук, после АЧХ следует обратить внимание на такой параметр, как коэффициент гармонических искажений.

Коэффициент гармонических искажений


По сути, это основной параметр, определяющий качество звучания. Вопрос только в том, что для вас качество. Например, всем известные наушники Beats by Dr. Dre на частоте 1кГц имеют коэффициент гармонических искажений почти 1,5% (выше 1.0% считается довольно посредственным результатом). При этом, как ни странно, указанные наушники популярны у потребителей.

Этот параметр желательно знать для каждой конкретной группы частот, потому что для разных частот допустимые значения разнятся. Например, для низких частот допустимым значением можно считать и 10%, а вот для высоких уже не более того самого 1%.

Не все производители любят указывать этот параметр на своих продуктах, т.к., в отличие от той же громкости, его довольно непросто соблюсти. Поэтому, если на устройстве, которое вы выбираете, есть подобный график и в нем вы видите величину не более 0,5%, следует присмотреться к этому устройству повнимательнее – это очень хороший показатель.

Мы уже знаем, как выбрать наушники/колонки, которые будут играть громче на вашем устройстве. Но как понять, насколько громко они будут играть?

Для этого существует параметр, о котором вы скорее всего не раз слышали. Его очень любят использовать ночные клубы в своих рекламных материалах, чтобы показать, насколько громко будет на вечеринке. Этот параметр измеряется в децибелах.

Чувствительность (громкость, уровень шума)

Децибел (дБ), единица измерения интенсивности звука – названа так в честь Александра Грэма Бэлла.

Александр Грэм Белл - учёный, изобретатель и бизнесмен шотландского происхождения, один из основоположников телефонии, основатель компании Bell Labs (бывш. Bell Telephone Company), определившей всё дальнейшее развитие телекоммуникационной отрасли в США.

Данный параметр неразрывно связан с сопротивлением. Достаточным принято считать уровень в 95-100 дБ (на самом деле это очень много).

Например, рекорд громкости был установлен группой Kiss 15 июля 2009 года на концерте в Оттаве. Громкость звука составила 136 дБ. По этому параметру группа Kiss обошла целый ряд знаменитых конкурентов, среди которых такие группы, как The Who, Metallica и Manowar.

При этом неофициальный рекорд принадлежит американской команде The Swans. По неподтверждённым сведениям, на нескольких концертах этой группы звук достигал громкости в 140 дБ.

Если захотите повторить или превзойти этот рекорд, помните, что громкий звук может быть расценен как нарушение общественного порядка – для Москвы, например, нормы предусматривают уровень звука, эквивалентный ночью 30 дБА, днем – 40 дБА, максимальный - 45 дБА ночью, 55 дБА днем.

И если с громкостью более-менее понятно, то вот следующий параметр понять и отследить не так-то просто, как предыдущие. Речь идет о динамическом диапазоне.

Динамический диапазон

По сути, это разница между самым громкими и тихими звуками без отсечения частот (перегрузки).

Каждый, кто хоть раз бывал в современном кинотеатре, испытывал на себе, что такое широкий динамический диапазон. Это тот самый параметр, благодаря которому вы слышите и, например, звук выстрела во всей его красе, и шорох ботинок крадущегося по крыше снайпера, который этот выстрел произвел.

Больший диапазон у вашей аппаратуры означает большее количество звуков, которое без потерь сможет передать ваше устройство.

При этом оказывается, что недостаточно передать максимально широкий динамический диапазон, нужно умудриться сделать это так, чтобы каждую частоту было не просто слышно, а слышно качественно. За это отвечает один из тех параметров, который без труда сможет оценить практически каждый при прослушивании высококачественной записи на интересующей его аппаратуре. Речь идет о детализации.

Детализация

Это умение аппаратуры разделять звук по частотам – низкие, средние, высокие (НЧ, СЧ, ВЧ).


Именно от этого параметра зависит то, насколько отчетливо будет слышно отдельные инструменты, то, насколько детальной будет музыка, не превратится ли она в просто в мешанину звуков.

Однако даже при самой лучшей детализации различная аппаратура может давать совершенно разные впечатления от прослушивания.

Это зависит от умения аппаратуры локализовать источники звука .

В обзорах музыкальной техники данный параметр нередко делят на две составляющих – стереопанорама и глубина.

Стереопанорама

В обзорах этот параметр обычно описывают как широкий или узкий. Давайте разберемся, что это такое.

Из названия понятно, что речь идет про ширину чего-либо, но чего?

Представьте, что вы сидите (стоите) на концерте вашей любимой группы или исполнителя. И перед вами на сцене в определенном порядке расставлены инструменты. Одни ближе к центру, другие дальше.


Представили? Пусть они начнут играть.

А теперь закройте глаза и попробуйте отличить, где находится тот или иной инструмент. Думаю, у вас без труда это получится.

А если инструменты поставить перед вами в одну линию друг за другом?

Доведем ситуацию до абсурда и сдвинем инструменты вплотную друг к другу. И… посадим трубача на рояль.

Как думаете, понравится вам такое звучание? Получится разобрать, где какой инструмент?

Последние два варианта чаще всего можно слышать в некачественной аппаратуре, производителю которой неважно, какой звук выдает его продукт (как показывает практика, цена при этом совсем не показатель).

Качественные наушники, колонки, музыкальные системы должны уметь выстраивать правильную стереопанораму в вашей голове. Благодаря этому, слушая музыку через хорошую аппаратуру, можно услышать, где расположен каждый инструмент.

Однако даже при умении аппаратуры создавать великолепную стереопанораму такое звучание все равно будет ощущаться неестественным, плоским из-за того, что в жизни мы воспринимаем звук не только в горизонтальной плоскости. Поэтому не менее важным оказывается такой параметр, как глубина звука.

Глубина звука

Вернемся на наш вымышленный концерт. Пианиста и скрипача отодвинем немного вглубь нашей сцены, а гитариста и саксофониста поставим чуть вперед. Вокалист же займет по праву принадлежащее ему место перед всеми инструментами.


На своей музыкальной аппаратуре вы это услышали?

Поздравляем, ваше устройство умеет создавать эффект пространственного звучания через синтез панорамы мнимых источников звука. А если проще, то у вашей аппаратуры хорошая локализация звука.

Если речь идет не о наушниках, то данный вопрос решается достаточно просто – используются несколько излучателей, расставленных вокруг, позволяющих разделить источники звука. Если же речь идет о ваших наушниках и в них это слышно, поздравляем вас второй раз, у вас весьма неплохие наушники по данному параметру.

Ваша аппаратура имеет широкий динамический диапазон, отлично сбалансирована и удачно локализует звук, но готова ли она к резким перепадам звука и стремительному нарастанию и спаду импульсов?

Как у нее с атакой?

Атака

Из названия, по идее, понятно, что это что-то стремительное и неотвратимое, как удар батареи «Катюш».

А если серьезно, вот что нам говорит об этом Википедия : Атака звука - первоначальный импульс звукоизвлечения, необходимый для образования звуков при игре на каком-либо музыкальном инструменте или при пении вокальных партий; некоторые нюансировочные характеристики различных способов звукоизвлечения, исполнительских штрихов, артикуляции и фразировки.

Если попытаться перевести это на понятный язык, то это скорость нарастания амплитуды звука до достижения заданного значения. А если еще понятней - если у вашей аппаратуры плохо с атакой, то яркие композиции с гитарами, живыми ударными и быстрыми перепадами звука будут звучать ватно и глухо, а значит, прощай хороший hard rock и иже с ним…

Кроме всего прочего, в статьях часто можно встретить такой термин, как сибилянты.

Сибилянты

Дословно – свистящие звуки. Согласные звуки, при произношении которых поток воздуха стремительно проходит между зубами.

Помните этого товарища из диснеевского мультфильма про Робина Гуда?

Вот в его речи очень, очень много сибилянтов. И если ваша аппаратура так же свистит и шипит, то увы, это не очень хороший звук.

Ремарка: кстати, сам Робин Гуд из этого мультфильма подозрительно похож на Лиса из не так давно вышедшего на экраны диснеевского же мультфильма «Зверополис». Дисней, ты повторяешься:)

Песок

Еще один субъективный параметр, который невозможно измерить. А можно только услышать.


По своей сути близок к сибилянтам, выражается в том, что на большой громкости, при перегрузке, высокие частоты начинают распадаться на части и появляется эффект сыплющегося песка, а иногда и высокочастотное дребезжание. Звук становится каким-то шершавым и при этом рыхлым. Чем раньше это происходит, тем хуже, и наоборот.

Попробуйте дома, с высоты в несколько сантиметров, медленно высыпать горсть сахарного песка на металлическую крышку от кастрюли. Услышали? Вот, это оно.

Ищите звук, в котором нет песка.

Частотный диапазон

Одним из последних непосредственных параметров звука, который хотелось бы рассмотреть, является частотный диапазон.

Измеряется в герцах (Гц).

Генрих Рудольф Герц, основное достижение - экспериментальное подтверждение электромагнитной теории света Джеймса Максвелла. Герц доказал существование электромагнитных волн. Именем Герца с 1933 года называется единица измерения частоты, которая входит в международную метрическую систему единиц СИ.

Это тот параметр, который вы с вероятностью в 99% найдете в описании практически любой музыкальной техники. Почему же я оставил его на потом?

Начать следует с того, что человек слышит звуки, находящиеся в определенном частотном диапазоне, а именно от 20 Гц до 20000 Гц. Всё, что выше этого значения, – ультразвук. Все, что ниже, – инфразвук. Они недоступны человеческому слуху, зато доступны братьям нашим меньшим. Это знакомо нам из школьных курсов физики и биологии.


На деле же у большинства людей реальный слышимый диапазон куда скромнее, причем, у женщин слышимый диапазон сдвинут вверх относительно мужского, поэтому мужчины лучше различают низкие, а женщины высокие частоты.

Зачем же тогда производители на своих продуктах указывают диапазон, выходящий за рамки нашего восприятия? Может быть, это только маркетинг?

И да, и нет. Человек не только слышит, но и чувствует, ощущает звук.

Доводилось ли вам стоять вблизи играющей большой колонки или сабвуфера? Вспомните свои ощущения. Звук не только слышен, он еще и ощущается всем телом, имеет давление, силу. Поэтому чем больший диапазон указан на вашей аппаратуре, тем лучше.


Однако всё же не стоит придавать этому показателю слишком большое значение - редко встретишь аппаратуру, частотный диапазон которой уже границ человеческого восприятия.

Дополнительные характеристики

Все вышеперечисленные характеристики напрямую относятся к качеству воспроизводимого звука. Однако на итоговый результат, а значит, и на удовольствие от просмотра/прослушивания, влияет и то, какого качества у вас исходный файл и какой источник звука вы используете.

Форматы

Эта информация у всех на слуху, и большинство и так об этом знает, но на всякий случай напомним.

Всего выделяют три основных группы звуковых форматов файлов:

  • аудиоформаты без сжатия, такие как WAV, AIFF
  • аудиоформаты со сжатием без потерь (APE, FLAC)
  • аудиоформаты со сжатием с потерями (MP3, Ogg)

Более подробно об этом рекомендуем прочесть, обратившись к Википедии .

Мы же для себя отметим, что использовать форматы APE, FLAC имеет смысл, если у вас аппаратура профессионального либо полупрофессионального уровня. В остальных же случаях обычно хватает возможностей формата MP3, пережатого из качественного источника с битрейтом от 256 кбит/сек (чем выше битрейт, тем меньше было потерь при сжатии звука). Однако это скорее дело вкуса, слуха и индивидуальных предпочтений.

Источник

Не менее важным является и качество источника звука.

Раз уж речь изначально шла про музыку на смартфонах, давайте рассмотрим именно этот вариант.

Еще не так давно звук был аналоговым. Помните бобины, кассеты? Это аналоговый звук.


И в ваших наушниках вы слышите аналоговый звук, который прошел две стадии преобразования. Сначала его из аналогового преобразовали в цифровой, а затем перед подачей на наушник/колонку обратно преобразовали в аналоговый. И от того, какого качества было это преобразование, в итоге будет зависеть результат – качество звучания.

В смартфоне за этот процесс отвечает ЦАП – цифро-аналоговый преобразователь.

Чем качественнее ЦАП, тем качественнее будет звук, который вы услышите. И наоборот. Если ЦАП в устройстве посредственный, то какими бы ни были ваши колонки или наушники, о высоком качестве звука можно забыть.

Все смартфоны можно разделить на две основных категории:

  1. Смартфоны с выделенным ЦАП
  2. Смартфоны со встроенным ЦАП

На данный момент производством ЦАП для смартфонов занимается большое количество производителей. Что выбрать, вы можете решить, воспользовавшись поиском и прочитав описание того или иного устройства. Однако не забывайте, что и среди смартфонов со встроенным ЦАП, и среди смартфонов с выделенным ЦАП есть образцы с очень хорошим звуком и не очень, потому как немаловажную роль играют оптимизация операционной системы, версия прошивки и то приложение, через которое вы слушаете музыку. Кроме этого, существуют программные аудиомоды ядра, позволяющие улучшить итоговое качество звучания. И если инженеры и программисты в компании делают одно дело и делают его грамотно, то результат оказывается заслуживающим внимания.

При этом важно знать, что при прямом сравнении двух устройств, одно из которых оснащено качественным встроенным ЦАП, а другое – хорошим выделенным ЦАП, выигрыш неизменно будет за последним.

Заключение

Звук – неисчерпаемая тема.

Надеюсь, что благодаря этому материалу многое в музыкальных обзорах и текстах стало для вас понятнее и проще, а незнакомая ранее терминология обрела дополнительный смысл и значение, ведь всё легко, когда знаешь.

Обе части нашего ликбеза про звук написаны при поддержке компании Meizu. Вместо обычного расхваливания аппаратов мы решили сделать для вас полезные и интересные статьи и обратить внимание на важность источника воспроизведения при получении качественного звука.

Зачем это нужно для Meizu? На днях начался предзаказ нового музыкального флагмана Meizu Pro 6 Plus , поэтому компании важно, чтобы обычный пользователь знал о нюансах качественного звука и ключевой роли источника воспроизведения. Кстати, оформив оплаченный предзаказ до конца года, вы получите в подарок к смартфону гарнитуру Meizu HD50.

А еще мы подготовили для вас музыкальную викторину с развернутыми комментариями по каждому вопросу, рекомендуем попробовать свои силы:

Что такое динамический диапазон?

Динамический диапазон можно определить как расстояние между уровнями самого тихого и самого громкого сигналов из возможных. К примеру, если в инструкции к процессору указано, что максимальный входной уровень сигнала до искажения равен +24 дБ, а шумовой порог на выходе равен -92 дБ, значит суммарный динамический диапазон процессора равен 24 + 92 = 116 дБ.

Динамический диапазон оркестра в среднем находится в пределах от -50 дБ до +10 дБ. Что в сумме даёт 60 дБ. Хотя вам может показаться, что динамический диапазон в 60 дБ - это мало, проведя простые расчёты, оказывается, что +10 дБ - это в 1000 раз громче, чем -50 дБ!

Динамический диапазон в рок музыке намного меньше, обычно от -10 dдБ до +10 Дб, или 20 дБ в сумме. Поэтому смешивание разных сигналов в рок музыке в единый микс довольно занудное занятие.

Для чего нам компрессия?

Допустим, вы работаете над сведением роковой записи, средний динамический диапазон у нее 20 дБ. И вы хотите добавить в микс необработанный компрессором вокал. Средний динамический диапазон у вокала равен примерно 40 дБ. Чем это чревато для микса? Слишком тихие вокальные куски будут просто не слышны, а слишком громкие будут выпирать из общей картины. В данной ситуации компрессор необходим для уменьшения (компрессии) динамического диапазона вокала в пределах 10 дБ.

В данном случае вокал будет находиться примерно на уровне +5 дБ. Диапазон - от 0 дБ до +10 дБ. Тихие фразы теперь будут выше самого низкого уровня сигнала в миксе, а громкие фразы не будут выпирать. Получается, что вокал занимает своё место в миксе.

Тот же самый принцип работает для любого инструмента в миксе. У каждого инструмента есть свое место в миксе, а хороший компрессор помогает звукорежиссеру правильно их смешать.

Разве компрессор нужен для всего?

Обычно в ответ на этот вопрос вы слышите: "Конечно же, нет! Перекомпрессированные треки звучат ужасно.” Это утверждение верно лишь в одном случае - если вы отчетливо слышите как работает компрессор на записи. Качественный дорогой компрессор, будучи правильно настроенным, звучит незаметно! Перекомпрессированный звук - это следствие ошибок в обработке конкретных инструментов, если конечно это не сделано умышленно с целью получить спецэффект.

Как вы думаете, зачем на всех дорогих микшерных пультах на каждом канале есть свой компрессор? Ответ прост - большинство инструментов нуждается в компрессии, пусть даже едва заметной. Это помогает им быть слышимыми в миксе.

Зачем нам нойз-гейты?

Давайте рассмотрим пример с вокалом. Допустим, вы установили для него диапазон в 20 дБ. Проблемы начинаются, когда компрессор усиливает самые тихие сигналы в вокальном треке. Всплывают всякие нежелательные шумы на заднем плане, куски фонограммы, попавшей в микрофон из наушников и т.п. Вы можете попробовать просто убрать громкость в паузах, но это обычно заканчивается полным провалом. Намного лучший способ - использовать нойз-гейт. Мы можем установить порог срабатывания нойз-гейта, к примеру, на -10 дБ, что соответствует нижней границе динамического диапазона вокала в нашем случае. Таким образом гейт будет автоматически убирать в ноль все нежелательные сигналы между фразами.

Если вы когда-либо пробовали сводить живую запись, вы знаете сколько проблем возникает с ударной установкой, а именно с железом, которое проникает в микрофоны, установленные на томах. Как только вы добавляете верхов на эквалайзере, чтобы сделать томы более яркими, начинают лезть наверх тарелки. И это особенно хорошо слышно через ВЧ громкоговорители в мониторах. Если же мы используем гейты на микрофонах, записывающих томы, так что железо больше не будет звучать через них в паузах, мы очень сильно прочистим общий микс и сделаем его в разы разборчивее.

Типы динамической обработки

Динамическая обработка - это процесс изменения динамического диапазона сигнала, позволяющий расширить возможности оборудования, через которое записывается или воспроизводится этот сигнал. Иными словами, мы получаем возможность записывать или проигрывать записанный сигнал без искажений и/или шума, тем самым упрощая себе задачу сведения.

Компрессор и лимитер

Пробивной, хорошо слышимый, с хорошим презенсом - это все описания звуковых сигналов, полученных при помощи их обработки компрессорами и лимитерами.

Компрессия и лимитирование - это формы управления динамическим диапазоном (громкостью) сигнала. Аудио сигналы имеют довольно большой разброс по уровням громкости. Пиковый сигнал может вызвать перегрузку в звукозаписывающей цепи, что в свою очередь вызовет искажение сигнала.

Компрессор/лимитер - это своего рода усилитель, в котором уровень громкости зависит от уровня проходящего через него аудиосигнала. Выбрав определённое значение компрессора/лимитера, сигнал будет автоматически ослабляться выше заданного уровня или порогового уровня.

В сущности, компрессия - это процесс ослабления входного сигнала в заданной пропорции. Используется для сужения динамического диапазона голоса или музыкального инструмента, позволяет производить запись без искажений. Также применяется при создании микса, уменьшая разницу частот каждой дорожки.

Вокалист, допустим, постоянно перемещается перед микрофоном и сигнал на выходе колеблется вверх-вниз, что звучит странно. В данном случае компрессор решит проблему, ослабив громкость отдельных фраз так, что в результате будет ровный вокал.

Степень ослабления сигнала зависит от соотношения компрессии и порогового уровня. Соотношение 2:1 или меньше считается слабой компрессией, при которой сигнал на выходе, превышающий пороговый уровень, уменьшается в два раза. Соотношения выше 10:1 можно называть сильным лимитированием.

Чем ниже пороговый уровень, тем большая часть сигнала подвергается компрессии (при определённом уровне входного сигнала). Важно знать меру, так как слишком сильная компрессия убивает динамику записи (при этом некоторые звукорежиссёры убивают её специально в качестве эффекта)!

Лимитирование - вид обработки сигнала, при котором подавляются всплески громкости (скачки амплитуды).

Компрессор/лимитер используется при выполнении многих задач при обработке звука, например:

Звук бочки ударной установки может затеряться среди электрогитар. И не важно, как громко звучит дорожка, бочка звучит “грязно”. Компрессия выправит звук бочки на фоне гитар.

Диапазон голоса на записи достаточно широк. Пики громкости могут сильно выпирать из общего звучания. Таких пиков может быть много, и они все разные, так что почти невозможно их выровнять через микшер. Компрессор/лимитер автоматически контролирует громкость, не искажая тонкостей вокала.

Соло гитара глушится ритмом. Не выкручивайте фейдер до предела, компрессия поставит ведущую гитару на своё место в миксе.

Бас-гитару сложно записывать. Ровный звук с хорошей атакой достигается за счёт правильной компрессии. И не нужно обрезать низы микса - компрессор/лимитер позволит басу проявиться на любых частота

Экспандер

Существует два основных вида экспансии: динамическая и нисходящая. Экспансия расширяет динамический диапазон сигнала, когда он выше порогового значения. Динамическая экспансия - это, по сути, компрессия наоборот.Динамическая экспансия применяется на ТВ и радио, чтобы отменить компрессию непосредственно до передачи аудио сигнала. Компрессию с последующей экспансией называют компандированием.На данный момент чаще всего применяют нисходящую экспансию. В отличие от компрессии, которая понижает сигнал выше порогового значения, экспансия понижает сигнал ниже порога экспансии. Степень понижения определяется соотношением экспансии. Например, соотношение 2:1 понижает сигнал вдвое (это значит, что если сигнал ниже порогового значения на 5дБ, экспандер понизит его до 10дБ).Экспансию часто используют для уменьшения шумов, это очень мощный и простой нойз-гейт. Главное различие между экспандером и нойз-гейтом в том, что экспансия зависит от того, насколько сильно сигнал ушёл “под порог”, тогда как при работе нойз-гейта это не имеет значения.

Шумоподавление

Шумоподавление - процесс устранения нежелательного шума из записи посредством ограничения сигнала ниже заданного порогового значения. Как было написано выше, работа нойз-гейта не зависит от уровня сигнала ниже порога. Выход устройства открыт, пока сигнал находится выше порога.

Длительность открытия выхода определяется скоростью атаки. Длительность работы устройства, когда сигнал ниже порогового называется временем удержания. Скорость закрывания выхода определяется временем возврата. Уровень подавления нежелательного сигнала в закрытом положении определяется диапазоном.

Краткий словарь терминов

Научно доказано, что если вы хотите быстро изучить какой-то предмет, вы должны для начала разобраться с основными понятиями. Тот же принцип действует и в звукозаписи и в дальнейшей работе со звуком. Большинство инструкций и учебников предполагают наличие базовых знаний, без которых читать их затруднительно. Надеюсь, что следующий раздел поможет вам навести порядок в голове и окончательно разобраться с основами.

Компрессоры

Атака (Attack).

Атака определяет скорость действия компрессора на входной сигнал. Долгая атака (регулятор по часовой стрелке до упора) вначале позволяет сигналу (т.н. начальный переходный процесс) проходить необработанным через компрессор, тогда как короткая атака (против часовой стрелки до упора) сразу же обрабатывает сигнал согласно соотношению компрессии и установленному пороговому уровню.

Авто (Auto).

Компрессор работает в режиме автоматической атаки и возврата. Регуляторы в этом случае не влияют на процесс, а используются запрограммированные значения параметров.

Боковой канал компрессора (Compressor Sidechain).

Вход бокового канала прерывает сигнал, с помощью которого компрессор определяет необходимой уровень компрессии. При отключенном боковом канале, входной сигнал идёт сразу на главную схему компрессора. При его включении, сигнал на главную схему не поступает. Теперь можно обрабатывать управляющий сигнал эквалайзером, например, применив де-эссинг (частотная коррекция голоса). После обработки управляющий сигнал поступает обратно в компрессор через выход канала. Типичное применение бокового канала - использование компрессора для приглушения фоновой музыки во время выступления ведущего или снижения громкости ритм-гитары на фоне вокала. Теперь голос легко различим. В этом случае голосовая дорожка идёт в боковой канал, в то время как фоновая музыка - на основную схему компрессора. Теперь компрессор понижает уровень фоновой музыки (процесс называется дакинг), когда вокалист начинает петь или говорить.

Жёсткая и мягкая компрессия (Hard/Soft Knee)

При жёсткой компрессии ослабление сигнала происходит максимально быстро в момент превышения пороговой величины. При мягкой, сигнал ослабляется более плавно, после того, как он превысил заданный порог, что обеспечивает более естественное для музыки звучание.

Лимитеры.

Лимитер - это компрессор, не допускающий увеличения сигнала выше уровня порога. Например, если порог установить на 0 дБ, параметр “Ratio” выкрутить полностью по часовой стрелке, то компрессор начнёт работу в режиме лимитера при 0 дБ, и выходной сигнал никогда не превысит этого значения.

Компенсирующее усиление (Makeup Gain).

При компрессии, сжатие сигнала обычно влияет на общий уровень громкости. Регулятор усиления позволяет восстановить утерянный при компрессии уровень.

Соотношение (Ratio).

Соотношение - это зависимость между выходным и входным сигналами, этот параметр устанавливает крутизну компрессии. Например, установив соотношение 2:1, любой сигнал выше порогового подвергнется компрессии в соотношении 2:1. На каждый децибел на входе компрессора приходится 0.5 дБ на выходе, таким образом образуется компрессия, сжимающая сигнал в два раза. При увеличении соотношения, компрессор постепенно переходит в режим работы лимитера.

Время возврата (Release).

Время возврата - это время, которое проходит между тем, как уровень входного сигнала упал ниже порога, и моментом, когда уровень компрессии вернулся на нулевой (компрессор перестал ослаблять сигнал). Короткий возврат создаёт неровный, “рубленый” звук, особенно у бас-гитары. Долгий возврат слишком “пережимает” звук, расплющивая его. Любому значению времени возврата найдётся применение - подбирайте на слух.

Threshold.

Пороговый уровень компрессии (порог компрессии) определяет значение, выше которого начинается ослабление сигнала. Обычно поворот регулятора порога влево увеличивает сигнал, который подвергается компрессии (при соотношении выше, чем 1:1).

Экспандеры

Нисходящая экспансия (Downward Expansion).

Нисходящая экспансия чаще всего применяется в профессиональной звукозаписи. Сигнал ослабляется ниже порогового значения. Это стандартный способ подавления шумов.

Соотношение (Ratio).

Соотношение экспансии определяет уровень ослабления сигнала, когда он опустился ниже порога. К примеру, при соотношении экспансии 2:1 каждый децибел ниже порогового значения ослабляется в два раза. При соотношении 4:1 и выше экспандер работает почти как нойз-гейт, только без возможности регулирования времени атаки, задержки и возврата.

Нойз гейты (Noise Gate)

Атака (Attack).

Параметр "время атаки" устанавливает величину, при которой открывается гейт. Быстрая атака подходит для перкуссивных инструментов, в то время как вокал и бас-гитара требуют плавного открытия. Применение к ним слишком быстрой атаки приведёт к появлению ощутимого “шёлкания” при сведении. Щелчок при открытии присущ любому гейту, но при правильной настройке его не слышно.

Время удержания (Hold).

Время удержания - фиксированный период времени, при котором гейт находится в открытом состоянии при уровне сигнала ниже порогового. Значение этого параметра играет роль при гейтировании, например, малого барабана - после удара по нему проходит определённое время, после которого гейт резко закрывается.

Диапазон (Range).

Диапазон гейта - величина ослабления сигнала, когда гейт закрыт. Таким образом, при значении этого параметра 0 дБ ослабления сигнала вообще не происходит. Значение -60 дБ означает, что при закрытом гейте сигнал будет ослаблен (гейтирован) на 60 дБ и т.д.

Время возврата (Release).

Время возврата гейта определяет скорость, с которой гейт переходит из открытого в полностью закрытое состояние. Время возврата обычно настраивают так, чтобы сохранить естественное затухание звука инструмента или вокала. Высокая скорость возврата убирает шумы, но может вызвать “заикание” ударных инструментов, которое устраняется низкой скоростью возврата. Внимательно настраивайте этот параметр для наиболее естественного эффекта.

Пороговый уровень (Threshold).

Пороговый уровень гейта устанавливает значение, при котором гейт открывается. Принцип прост - любой сигнал выше порогового проходит нетронутым, а сигнал ниже ослабляется на величину, зависящую от настроек диапазона. Если выкрутить регулятор влево до упора - гейт будет отключен (т.е. всегда открыт), и любой сигнал проходит без ослабления.

Ниже приведены пресеты компрессии, используемые в PreSonus BlueMax. Данные пресеты - стандартные установки, своего рода отправные точки для работы со звуком.

Вокал

Тёплый вокал. Это параметры для лёгкой компрессии с низким соотношением и расширенным диапазоном, в основном для лирических песен в живом исполнении. Вокал “на своём месте”.

Кричащий. Параметры для громкого вокала. Довольно жёсткая компрессия для вокалистов, которые не следят за расстоянием до микрофона. Голос сильно выступает из микса, создавая эффект присутствия.

Левый/правый (стерео) оверхэды. Параметры «соотношение» и «порог» здесь низкие, что даёт широкий диапазон, в который помещаются даже тарелки. Глубокие низы, общее звучание живое с невысокой реверберацией. Более пробивной звук, меньше эффекта комнаты.

Акустическая гитара. Пресет подчёркивает атаку акустической гитары и обеспечивает ровность звучания, что позволят гитаре оставаться слышимой.

Клавишные инструменты

Фортепиано. Особый пресет для выравнивания всего диапазона фортепиано - от нижнего звука до пятой октавы. Чётко слышны партии обеих рук.

Оркестр. Настройки подходят как для струнных, так и других оркестровых “наборов” синтезатора. Общий динамический диапазон снижен для удобного добавления в микс.

Контур. Настройки расширяют диапазон основного микса.

Threshold (порог) Ratio (соотношение) Attack (атака) Release (возврат)
-13.4 дБ 1.2:1 0.002 мс 182 мс

ВОЛОГДИН Э.И.

ДИНАМИЧЕСКИЙ ДИАПАЗОН

ЦИФРОВЫХ АУДИО ТРАКТОВ

Конспект лекций

Санкт Петербург

Динамический диапазон звуков и музыки......................................................................

Динамический диапазон фонограмм.................................................................................

Динамический диапазон цифрового аудио тракта.........................................................

Расширение динамического диапазона c использованием технологии Dithering .....

Расширение динамического диапазона с использованием технологии Noise Shaping

.......................................................................................................................................................

Список литературы...............................................................................................................

1. Динамический диапазон звуков и музыки

Человек слышит звук в чрезвычайно широком диапазоне звуковых давлений. Этот диапазон простирается от абсолютного порога слышимости до болевого порога 140 дБ SPL относительно нулевого уровня, за который принято давление 0,00002 Па (рис.1 .). Зона риска на этом рисунке обозначает область звуковых давлений, которые при

Абсолютный порог слышимости

Частота тональных звуков, кГц

Рис. 1. Области слышимости слуха

длительном воздействии могут привести к полной потери слуха. Болевой порог для тональных звуков зависит от частоты, для звуков с произвольным спектром за болевой порог принят уровень давления 120 дБ SPL. График абсолютного порога слышимости достаточно точно описывается эмпирическим равенством

В тишине чувствительность слуха человека повышается, а в атмосфере громких звуков – понижается, слух адаптируется к окружающей звуковой среде, поэтому динамический диапазон слуха не такой большой – около 70..80 дБ. Сверху он ограничен давлением 100 дБ SPL, а снизу шумом с уровнем -30…35 дБ SPL. Этот динамический диапазон может сдвигаться вверх и вниз до 20 дБ. Для комфортного восприятия музыки рекомендуется, чтобы звуковое давление не превышало 104 дБ SPL в домашних условиях и 112 дБ SPL, в специально оборудованных помещениях.

Динамический диапазон музыки определяется отношением в децибелах самого громкого звука (фортиссимо) и самого тихого звука (пианиссимо ).Динамический диапазон симфонической музыки составляет 65…75 дБ, а на концертах рок-музыки он возрастает

до 105 дБ, при этом пики звуковых давлений могут достигать 122…130 дБ SPL.

Динамический диапазон вокальных исполнителей - не превышает 35…45 дБ (табл.1 ).

Динамический диапазон музыки существенно зависит от выбора максимального

звукового давления P max , так как он ограничивается снизу абсолютным порогом

слышимости. Эта зависимость наиболее сильно выражена на краях звукового диапазона.

На рис. 2

приведены примеры изменения динамического диапазона тональных звуков. В

120dB Болевой порог

P max

80dB

DR 40 dB

50dB

80dB

50dB

Абсолютный порог

слышимости

Частота тональных звуков, кГц

Рис. 2. Динамический диапазон музыки и пороги слышимости слуха

зависимости от выбора P max

и частоты тональных звуков

динамический

диапазон

80 дБ уменьшается на краях

звукового диапазона до 40

Именно поэтому

принято измерять динамический диапазон звуков на частоте 1 кГц, на которой он может

достигать 117 дБ.

помещения маскирует звук и этим уменьшает его динамический диапазон

музыки снизу . Нарис.3 . показано как при уменьшении звукового давления от 120 до 80 дб

SPL динамический диапазон музыки из-за шума помещения уменьшается с 90 до 50 дБ.

120 dB SPL

DR 90 dB

Влиянием

полностью

пренебречь

только при

90dB

90dB

минимального уровня музыкальных звуков.

70dB

В студиях звукозаписи уровень шума не

90dB

превышает

квартирах

50dB

разговор

увеличивает уровень

шума до 60дБ SPL.

Именно поэтому тихая музыка часто тонет

Шум в квартире

помещения

прослушивания

невольно

возникает

увеличить

громкость.

Шум квантования, являющийся белым

шумом, заметен на слух при его

Шум в студии

интенсивности всего 4 дБ SPL, даже когда

общий шум аудио аппаратуры в помещении

достигает

Рис. 3. Динамический диапазон музыки в

необходимо сопоставить с тем, что полной

шкале FS цифрового измерителя уровня

соответствуют уровень между 105 и 112 дБ SPL. Поэтому для

бытовых помещений

динамический диапазон музыки не должен превышать 101 - 108 дБ.

Динамический диапазон микрофонов определяется так же, как это обычно делается в электрических трактах. Верхняя граница ограничивается допустимой величиной нелинейных искажений, а нижняя - уровнем собственных шумов. Современные студийные микрофоны допускают максимальное звуковое давление 125…145 дБ SPL, при этом нелинейные искажения не превышают 0,5% … 3%. Уровень собственных шумов микрофонов составляет 15…20 дБА, динамический диапазон – от 90 до 112 дБА, а отношение сигнал/шумот 70 до 80 дБА. Эти микрофоны с запасом перекрывают весь диапазон слуха человека от 120 дБ SPL до уровня шума студии 20 дБ SPL. В современных студиях запись производится с использованием 22 или 24 разрядных АЦП, иногда используется квантование с плавающей запятой, поэтому проблем с динамическим диапазоном не возникает. Стоит такая аппаратура крайне дорого.

2. Динамический диапазон фонограмм

Музыкальный и речевой сигналы представляют собой последовательность быстро нарастающих и более медленно затухающих звуковых импульсов (рис.4 .). Такой сигнал характеризуетсясреднеквадратическим и пиковым значениями уровней , разность этих уровней называется пик-фактором . Прямоугольная волна (меандр) имеет единичный пик-фактор 0 дБ, пик-фактор синусоиды равен 3 дБ. Фонограммы музыкальных и речевых сигналов имеют пик-фактор до 20 дБ и более.Время определения пик-фактора связано временем интегрирования при вычислении среднеквадратического значения сигнала, и обычно, оно равно 50 мс.

Динамический диапазон и пик-фактор музыкальной фонограммы определяют путем статистической обработкимгновенных значений сигналов. Наиболее подробно статистические характеристики рассчитываются в звуковом редакторе Audition 3 (рис.4 ).

Рис.4. Фрагменты фонограмм музыкальных отрывков различной длительности

Из них основными являются следующие: Peak Amplitude (L pic ), Maximum RMS Power (L max ), Minimum RMS Power (L min )и Average RMS Power (L avr ) (уровни максимального,

минимального и среднего среднеквадратического (эффективного) значения мощности сигнала).

Динамический диапазон фонограммы по данным этой таблицы определяется как

DR mL picL min ,

пик-фактор рассчитывается по формуле

PF mL picL avr

Динамический диапазон может быть также определен по гистограмме распределения уровней фонограммы, приведенной на рис.5. Такие операции удобно быстро делать до и после динамической обработки фонограммы.

Рис.4. Статистические характеристики фонограмммы музыки Бетховена «Элизе»

Рис.5. Гистограмма распределения музыки Бетховена «Элизе»

зависимости от задачи исследования. Если, например, важным является динамический диапазон мгновенных значений уровней фонограммы, то время интеграции должно быть 1-5 мс. Если измеряется динамический диапазон музыки с учетом слухового восприятия, то время интеграции выбирается равным 60 мс, это постоянная времени слуха.

позволяет определять динамический диапазон и пик-фактор с заданной вероятностью при выбранном времени интеграции. В звуковом редакторе Adobe Audition 3 используется нормализация гистограммы, при которой максимальной вероятности событий всегда соответствует значение 100. Такая гистограмма описывает распределение вероятностей уровней сигналов фонограммы относительно максимального значения. При ее построении автоматически подбирается масштаб по оси Х, поэтому затруднительно сравнивать гистограммы различных фонограмм.

Практическое применение. Кому и зачем нужна статистическая информация и гистограмма фонограммы. Эти данные прежде всего оказывают неоценимую помощь при динамической обработке фонограммы, так как они позволяются обоснованно выбрать характеристики компрессора и экспандера. Статистические результаты обработки фонограмм с музыкой различных жанров позволяют определить необходимый динамический диапазон электроакустического тракта, сформировать требования по пиковой и средней мощности головок акустических система. Они играют существенную роль при разработке алгоритмов компрессии звуковых сигналов.

Эмоциональную музыку с широким динамическим диапазоном и большим пик-

фактором можно слушать только на высококачественной дорогой аппаратуре с хорошими

акустическими

агрегатами.

наушниками и в автомобилях из-за шумов динамический

15 диапазон сокращается и она

просто отвратительно.

Поэтому широким спросом такие записи не пользуются и,

неизбежно, с каждым годом динамический диапазон и пик-

Рис.7. Фонограмма песни “I`ll Be There For You”

Рис. 6. Пик-фактор CD дисков

фонограмм преднамеренно изготовителями уменьшается (рис.6 .). На современных CD

дисках в большинстве случаев динамический диапазон не превышает 20 дБ, а пик-фактор-

чуть больше 3 дБ, что вполне достаточно для танцевальной музыки. На рис.7. приведена

картинка современной фонограммы с компакт диска.

3. Динамический диапазон цифрового аудио тракта

Обычный цифровой тракт

включает в себя АЦП и ЦАП.

Первый осуществляет

квантование аналоговых сигналов, и преобразование их в цифровой поток. Второй

производит обратное преобразование цифрового потока в аналоговый сигнал.

Квантование

округление

последовательности выборок

до целого двоичного

значения. При импульсно-кодовой модуляции (ИКМ) такая

операция

осуществляется

линейного

квантователя, называемого в технической литературе Mid-

Tread . У

него передаточная

имеет форму

«лестницы» с одинаковыми ступеньками

обязательно,

нечетное число уровней квантования. Округление

цифровых данных в этом квантователе производиться

ближайшего

двоичного значения (рис.8 ).

Этот алгоритм

принято называть rounding.

алгоритме

выходной

квантователя

симметричен относительно оси времени, и квантование

Рис. 8. Передаточные

осуществляется с порогом, равным

0,5 шага квантования

функции квантователей

Пока входной сигнал меньше этого порога выходной

Mid-Tread и Mid-Riser

сигнал квантователя равен нулю, это значит, что

квантование осуществляется с центральной отсечкой.

входном сигнале несколько выше порога квантования выходной сигнал имеет вид

последовательности импульсов со скважностью, зависящей

от уровня

дальнейшем увеличении уровня ЗС формируется выходной сигнал ступенчатой формы.

Округление цифровых данных в квантователе Mid-Riser производится до ближайшей меньшей величины (рис.8 ), поэтому данный алгоритм принято называть- truncating . Квантователь Mid-Riser отличается тем, что у него отсутствует порог квантования, поэтому он передает звуковые сигналы очень маленьких уровней, даже ниже уровня

шума. Однако, при отсутствии ЗС любой ничтожный шум порождает на выходе последовательность случайных импульсов с амплитудой 1 квант, это значит, что такой квантователь усиливает шумы.

Динамический диапазон АЦП с квантователем Mid-Tread определяется через логарифм отношения максимального и минимального значений сигнала синусоидальной формы на входе квантователя

DR А 20 logA max ,

A min

Q 2 (q 1), A

Q – шаг квантования,q - число разрядов. Поэтому

DRА

Q 2 (q 1)

) 6.02q (1)

Q / 2

При q = 8 этот динамический диапазон равен 48 дБ, а приq = 16 он увеличивается до 96 дБ. ЗначениеDR A определяет нижнюю границу динамического диапазона по уровню входных сигналов квантователя типа Mid-Tread.

Динамический диапазон ЦАПа измеряется в соответствии с рекомендациями стандартаEIAJ через отношение максимального среднеквадратического значения сигнала

синусоидальной формы A max на его выходе к среднеквадратическому значению шума квантования, измеренному в полосе от 0 до частоты НайквистаF N

A max

Q 2 (q 1)

A max

q 1, 76;q

При q = 16

DR R = 98 дБ, что

децибела

динамического диапазона

квантователя, определяемого формулой (1). Измеренный таким образом динамический диапазон ЦАПа отождествляется со значением его SNR .

Если верхний диапазон частот ограничивается значением F max F N , то расчетная формула дляSNR иDR R принимает вид

SNR R DR R 6.02q 1,76 10 log

2 F max

где f s - частота дискретизации,F max - максимальная частота звукового диапазона. При

f s = 44,1 кГц иF max = 20 кГц иSNR R =DR R = 98,5 дБ. Как видно, отношение сигнал/шум лишь на 2 децибела больше динамического диапазона. Надо обратить внимание на то, что величинаSNR зависит от частотf s иF max , тогда какDR от этих параметров не зависит.

Тем не менее, в большинстве технических публикаций динамический диапазон отождествляется с отношением сигнал/шум. Это подтверждается и стандартами AES 17 и

IEC 61606.

В стандарте IEC 61606 рекомендуется измерятьSNR иDR при подаче на вход АЦП синусоидального сигнала с частотой 997 Гц и уровнем минус 60 дБ FS c обязательным использованием технологииTPDF Dithering . При этом расчетное соотношение дляSNR из-за вносимого дополнительного шума предлагается в виде

SNR T DR T 6.02q 3,01 10 log

2 F max

При прежних условиях DR =SNR = 93,7 дБ, а не 96 дБ, как это часто встречается в технической литературе. Следовательно, уменьшается и расчетный динамический диапазон. ВместоSNR часто используется его обратная величина, определяющая интегральный уровень шума квантования

L nTSNR T.

В соответствии со стандартом IEC 61606 измерение динамического диапазонаDR R производится в соответствии со схемой, приведенной нарис.9. В этой схеме тестовый

Рис..9. Схема измерения динамического диапазона ЦАП

цифровой сигнал с частотой 1 кГц, и уровнем минус 60 дБ, сформированный с использованием технологии TPDF Dithering , подается на вход ЦАПа. Аналоговый сигнал с ЦАПа поступает на вход ФНЧ с частотой среза 20 кГц, ограничивающий спектр шума квантования. Далее производится фильтрация с помощью взвешивающего фильтра типаА , учитывающего особенности слухового восприятия шума квантования, что увеличивает динамический диапазон на 2-3 дБ. Тестовый сигнал и шум усиливаются на 60 дБ и подаются на измеритель уровняTHD+N . В этом измерителе тональный сигнал подавляется режекторным фильтром и вольтметром эффективных значений измеряется уровень шума в децибелах. Это измеренное значение уровня шума отождествляется, с обратным знаком, с динамическим диапазоном ЦАПа.

При квантовании сигналов минимального уровня возникают громадные искажения, достигающие 100% (рис.10 ). В связи с этим на практике приходиться руководствоватьсяреальным динамическим диапазоном АЦП. При определении этого диапазона необходимо учитывать: пик-фактор музыкальных сигналов, достигающий 12…20 дБ, необходимость поднимать уровень нижней границы динамического диапазона над уровнем шума квантования хотя бы на 20 дБ и иметь дополнительный запас в верхней части динамического диапазона около 10…12 дБ для предотвращения случайной перегрузки.

В результате реальный динамический диапазон

записи 16-ти разрядного АЦП ИКМ

не превышает 48…54 дБ. Этого

даже близко не хватает для хорошей

студийной

звукозаписи.

автоматической регулировке уровней, что

имеет место при записи компакт-дисков,

диапазон может быть расширен до 74

16 бит,1000 Гц, 93 дБ

заметным

ухудшением

качества звука сигналов низкого уровня.

Рис.10. Последовательность выборок искаженной

Запас динамического диапазона сверху

формы синусоидального сигнала

предохраняет от возможности перегрузки,

превышают

ожидаемое значение. При записи танцевальной музыки вполне достаточно запаса в 6 дБ.

При записи симфонической музыки иногда приходиться иметь запас до 20…30 дБ. Запас динамического диапазона снизу предотвращает возможность тихих пассажей оказаться ниже уровня шума и, тем более, ниже порога слышимости.

В цифровых трактах верхняя граница динамического диапазонаограничивается уровнем сигнала 0 дБ FS . Без использования технологии Dithering нижняя граница динамического диапазонаограничивается уровнем

LA 1 / DRA .

При q = 8 бит он равен минус 48 дБ, а приq = 16 бит – минус 96 дБ. Неизбежный шум тракта повышает этот уровень.

Интегральный уровень шума минус 93,7 дБ – это много или мало. Важно насколько этот уровень превышает порог слышимости. С использованием технологии Dithering шум

Рис.11. Пороги слышимости шума квантования в зависимости от числа разрядов

квантования становится белым шумом, порог слышимости которого равен 4 дБ SPL . Это значит, что вблизи 3 кГц шум квантования при q = 16 бит будет превышать порог слышимости на 22,3 дБ (рис.11). Как видно из этого рисунка, для того чтобы шум квантования был не слышен требуется использовать 20-разрядное квантование.

4. Расширение динамического диапазона c использованием технологии Dithering

Для расширения динамического диапазона ИКМ тракта с квантователем типа MeadTread без увеличения числа разрядов и частоты дискретизации разработано множество

аналоговых сигналов к ЗС добавляется небольшой аналоговый шум. Более часто эта технология используется при реквантовании цифровых ЗС , когда производится

осуществляется с 24 разрядами, а затем производиться реквантование, обычно до 16 разрядов, как это принято в стандарте CD. При этом качество такого CD по шумам соответствует 20разрядной записи.

В процессе реквантования чаще применяют операцию truncating , при которой просто отбрасываются младшие разряды кодовых слов. В этом случае в выходном сигнале

Меня зовут Луи Филипп Дион (Louis Philippe Dion), я звукорежиссёр Rainbow Six: Siege, работаю в Ubisoft уже семь лет. Прежде я занимался звуковым оформлением в Prince of Persia и Splinter Cell. Также я работал продакт-менеджером собственного звукового движка компании Ubisoft.

До прихода в игровую индустрию я работал звукооператором на съёмках нескольких сериалов и фильмов. На досуге я, сколько себя помню, занимался музыкой, воспитывая к себе любовь к синтезаторам, гитарам, да и вообще ко всему, что может производить звук.

Проявляя большой интерес к техническим аспектам звука, я с энтузиазмом перешёл в индустрию игр. Я чувствовал, что, по сравнению с телевидением и кино, игры предлагают более широкий простор для инноваций и технологических прорывов. Сейчас мы только едва коснулись потенциала интерактивного звука, сведения в реальном времени и новых алгоритмов позиционирования, и мне очень интересно, что преподнесёт нам будущее.

Динамическое распространение звука в разрушаемом окружении

С распространением звука связаны три базовых аспекта физики: отражение (когда звук отскакивает от поверхностей), поглощение (когда звук проходит сквозь поверхность, но лишается некоторых частот) и дифракция (когда звук огибает объекты). Ваш слух ежедневно отмечает эти явления. В реальной жизни за предполагаемое положение источника звука отвечает множество других факторов, но я сосредоточусь именно на физике распространения звука и о том, как мы её имитируем.

Главной инновацией в Siege было обильное использование дифракции – мы для этого используем термин «обструкция». С помощью стратегического размещения на карте «узлов распространения» мы могли высчитывать простейший путь звука от источника к слушателю. Простота пути зависит от нескольких факторов, а именно, от длины пути, общей величины огибаемых углов и штрафов на степень разрушения на определённых узлах.

Например, если стена не повреждена, узел внутри неё не учитывается алгоритмом (бесконечный штраф). А вот если в ней дыра, узел будет доступен для выбора пути распространения. Затем мы виртуально смещаем источник звука в соответствии с направлением таких путей, что в конечном итоге и выступает аналогом дифракции.

Также мы применяем несколько стратегий для симуляции поглощения, называя это «окклюзией». В зависимости от источника, мы либо проигрываем заранее подготовленную приглушённую версию звука (например, шаги на верхнем этаже) или же проигрываем звук напрямую от источника с фильтрацией частот в реальном времени. Второй вариант увеличивает нагрузку на процессор, так что он преимущественно зарезервирован для звуков оружия. В реальной жизни можно одновременно услышать поглощённую и отклонённую версию звука, и мы тоже комбинируем их, давая больше информации о реальном местонахождении источника.

Наконец, для отражения (по нашей терминологии «реверберации») мы используем импульсный ревербератор. Это специальный ревербератор, «сканирующий» акустические свойства настоящей комнаты, и затем проигрывающий в ней звуки из нашей игры. На мой взгляд, этот метод на световые годы вперёд обгоняет традиционные параметрические ревербераторы – по крайней мере, для симуляционных целей. Единственный минус в том, что из-за нагрузки на процессор мы не можем применять его в большом количестве случаев. Для обхода этого ограничения мы «привязываем» реверберацию к оружию и проигрываем её обратно в направлении этого оружия, что предоставляет игроку более точную информацию о местонахождении противника.

Для чего это всё?

Разрушаемое окружение было главной трудностью во время разработки системы распространения звука. Одно дело вести звук по кратчайшему пути, и совсем другое, когда уровень изменяется во время игры – таким мы прежде никогда не занимались. Было непросто сохранять высокое качество звука, не забывая при этом о производительности. Мы поместили несколько узлов в разрушаемое окружение, и они оставались закрытыми до повреждения объекта. Мы раз за разом экспериментировали с разным количеством возможных путей распространения, пока не нащупали золотую середину между точностью и быстродействием.

Что интересно, модификаторы распространения звука работают не только в одну сторону: узлы могут как открываться, так и закрываться. Баррикадируясь и усиливая стены, игроки тоже меняют путь распространения звука. Такие преграды не обязательно должны полностью закрывать узел – в зависимости от свойств материала (дерево, стекло, бетон и т.д.), звук всё ещё может проходить насквозь, но с определённым штрафом. К примеру, деревянные и металлические баррикады имеют разные настройки приглушения звука.

С таким уровнем разрушаемости, как в Siege, случилась бы катастрофа, положись мы лишь на окклюзию без использования обструкции. Окклюзия в таком случае была бы слишком мощным «валлхаком». Играя за защиту, можно было бы просто разрушить как можно больше стен и прислушиваться, где именно идут атакующие – у них бы не было и шанса. Мы пытаемся сохранять максимальную точность звука, но симуляция «реальной физики» ещё и добавляет в игру дополнительный слой догадок о местонахождении противника, что уравнивает обе стороны. Конечно, в некоторых ситуациях этот момент может сильно расстроить, но такова и реальная жизнь.

Карта Hereford

Слышимость действий игрока

Бесшумность и бездействие являются ключевыми принципами игры, и даже с трёхминутным таймером раунда игроки предпочитают прислушиваться к соперникам. На самом деле, ещё только приступая к разработке, мы подумывали, что игровое окружение будет звучать довольно неинтересно. Тихо выжидать в спальне пригородного домика – это вам не сражение в гуще боя и не космическая схватка, верно?

На тот момент в игру были добавлены ещё не все звуки, а система их распространения находилась лишь в ранней стадии разработки. Но когда все кусочки паззла стали потихоньку собираться воедино, мы поняли, что способны добиться кое-чего посерьёзнее «поддельного напряжения». Угроза, которую вы слышите, реальна и направляется к вам. Отказавшись от тяжёлого эмбиента, мы смогли и повысить тревожность атмосферы, и создать простор для предоставления игрокам более точной информации о противнике.

Схема распространения звука на карте Hereford

Особое внимание мы уделили звукам перемещения, позволяющим просто прислушиваться, чтобы понять местонахождение врага – по звуковым подсказкам вполне можно определить вес, броню и скорость оперативника. Баррикады, гаджеты и прочие устройства также снабжены специфическими звуками.

Звуки, что издаёт игровой персонаж, усилены по двум важным причинам: во-первых, игрок понимает, что сильно шумит и что это может его выдать; во-вторых, это даёт понять, что необходимо замедлиться, если хочешь прислушаться. Это основа дизайна звука в Siege: передвигаясь медленнее и прислушиваясь к окружению, можно собрать больше информации и сыграть лучше.

Узлы распространения крупным планом

Итоги

Начиная работу над проектом, мы стремились к созданию тревожной атмосферы. На каком-то моменте мы добавляли для этого музыку и эффекты, но, как уже было сказано, лучшей идеей было использование самих игроков в качестве источников звука. Так что все «поддельные» звуки мы убрали, сосредоточившись на том, что действительно имеет значение.

Сегодня, спустя немалое время, всё это выглядит очевидным, но я вижу, что редкие игры отказываются от классического искусственного напряжения атмосферы. Избавление от эффектов, как по мне, придало Siege отличительное звучание, которое не только приятно на слух, но и во многом влияет на игровой процесс.

Не так давно мне попался довольно качественный HDCD релиз альбома «Mark Knopfler - Sailing To Philadelphia». Впервые я отметил столь низкий уровень фонового шума и динамический диапазон для музыки с живыми инструментами и голосом. Результат сканирования всего альбома гласил:

Left Right
Peak Amplitude: 0,00 dB 0,00 dB
True Peak Amplitude: 0,64 dBTP 0,58 dBTP
Maximum Sample Value: 8388607 8387420
Minimum Sample Value: -8388608 -8388608
Possibly Clipped Samples: 3 1
Total RMS Amplitude: -15,12 dB -15,20 dB
Maximum RMS Amplitude: -5,75 dB -5,80 dB
Minimum RMS Amplitude: -120,64 dB -123,81 dB
Average RMS Amplitude: -18,90 dB -19,01 dB
DC Offset: 0,00 % 0,00 %
Measured Bit Depth: 24 24
Dynamic Range: 114,89 dB 118,02 dB
Dynamic Range Used: 83,15 dB 82,95 dB
Loudness: -13,48 dB -12,87 dB
Perceived Loudness: -10,61 dB -10,63 dB
ITU-R BS.1770-2 Loudness: -12,72 LUFS

0dB = FS Square Wave
Using RMS Window of 50,00 ms
Account for DC = true

Краткий ликбез

Динамический диапазон - это разница (или соотношение) между самым громким и самым тихим звуком, выраженная в децибелах. Для определения динамического диапазона используют RMS значения, т.е. Root Mean Square - среднеквадратичные, или же, как принято у нас - «действующие» или «эффективные». Действующее значение выбирается потому, что именно оно (в отличие от пикового) напрямую связано с уровнем звукового давления, и, как следствие, воспринимаемой громкости.

Для анализа вышеуказанных характеристик был использован Adobe Audition. В данном случае алгоритм анализа ДД примерно такой: всё аудио разбивается на небольшие участки, именуемые окнами (в данном случае их размер равен 50 мс), затем для каждого такого участка вычисляется среднеквадратичное значение (путем интегрирования). Далее полученное значение соотносится с одним из следующих: 1. Среднеквадратичное значение для синусоиды с максимальной амплитудой и такой же продолжительностью. 2. Меандр с максимальной амплитудой и такой же продолжительностью. Как известно, меандр имеет максимально возможное значение RMS за период (т.к. модуль его амплитуды в любой момент равен максимуму), синусоида же имеет коэффициент 1/(корень из 2), т.е. 0.707 от максимального (или же пикового) значения. Если вы еще раз взглянете на отчет, то увидите, что там за 0 dB RMS взят меандр (square wave). Таким образом, полученные децибелы среднеквадратичного значения имеют опорный уровень (0 dBFS) равный среднеквадратичному значению для меандра.

Также надо отметить, что при расчете RMS может учитываться или не учитываться постоянная составляющая (в некоторых случаях колебания происходят не относительно нулевого значения, а относительно некоторой константы, которая и равна постоянной составляющей). В нашем случае учет постоянной составляющей включен.

После получения RMS значения для каждого окна производится поиск наименьшего и наибольшего значений. Разница между двумя этими значениями - и есть динамический диапазон.

Кроме того, Audition определяет параметр «Dynamic Range Used», который рассчитывается без учета тишины в начале и конце трека, а также без учета других продолжительных участков с тишиной внутри дорожки. Собственно, этот параметр и является наиболее информативным и важным при анализе динамического диапазона.

DVD-Audio

Так вот, сегодня я наконец заполучил DVD-Audio релиз того самого альбома, о котором писал выше. Результаты меня удивили еще больше. Многоканальная дорожка содержала записи с динамическим диапазоном более 100 дБ, хотя значения для отдельных каналов были довольно разными (кстати говоря, Audition показал для фронтальных каналов актуальную разрядность 24 бита, а для остальных - 20). Я решил произвести более детальный анализ записей: вручную выполнил сведение каналов в стерео (с помощью Channel Mixer в foobar2000), а затем проанализировал динамический диапазон 5.1 записи, стерео даунмикса с DVD диска и моего собственного даунмикса.

Результаты для каждого трека/канала приведены в таблице Excel .

Интересно, что динамический диапазон даунмиксов получились совершенно различным (разной была и громкость - у моего даунмикса она была ниже на несколько децибел). Но, так или иначе, например, для 4-го трека во всех трех случаях отмечается широкий динамический диапазон, более 90 дБ.

Но это что касается отдельных параметров. Наиболее же информативной является гистограмма громкости. Она показывает распределение громкости по частоте появления. Т.е. это значения RMS для всех окон, представленные в виде диаграммы, где по вертикали частота появления, по горизонтали уровень громкости. Таим образом можно видеть, какой уровень громкости преобладает в дорожке, насколько велика суммарная продолжительность тихих участков и т.д.

Например, вот гистограммы громкости для моего и DVD стерео даунмикса четвертого трека (правый канал), соответственно:

Высокая частота для громкости с уровнем около ~110 говорит о том, что это скорей всего уровень шумов звукозаписывающего оборудования. В общем же, наиболее интересными являются дорожки с довольно высоким процентом тихих фрагментов. Например, вот диаграмма для моего микса 7-го трека:

Подобный материал гипотетически может помочь выявить различия между 24- и 16-битным аудио. Именно с целью определить возможность выявления таких различий, а также вообще резонность использования 24-битного формата, я искал столь качественные аудиозаписи.

О результатах моих проверок я сообщу в следующих записях.

Добавлено: судя по всему, широкий динамический диапазон - лишь результат обработки записи. Т.е. тихие участки являются либо участками работы шумоподавления, либо фрагментами затухающих звуков (fade-in/fade-out). Реальных же продолжительных во времени звуков со столь низким уровнем (