Электролюминесцентная подсветка. Подсветка LCD дисплеев

Жидкокристаллические дисплеи (LCD) являются пассивными устройствами отображения информации. Для того чтобы сформированное изображение воспринималось глазом человека, его необходимо освещать, в простейшем случае - естественным внешним светом. При недостаточном естественном освещении или его отсутствии для дисплея может быть использован искусственный источник света.

Большинство современных LCD работают в одном из трех режимов отображения: в режиме полного отражения, при котором внешний свет отражается от рефлектора, расположенного позади дисплея (рис. 1, а); в режиме полуотражения, при котором рефлектор отражает внешний свет, но способен пропускать свет от источника света, расположенного позади него (рис. 1, б); в режиме подсвечивания, при котором рефлектор, отражаю- щий внешний свет, отсутствует и для подсветки изображения используется специальный источник света (рис. 1, в).

Рис. 1. Режимы отображения LCD

Прием, при котором используется специальный источник света, получил название «подсветка» (backlight). Для реализации подсветки используется несколько технологий, которые будут рассмотрены ниже.

Электролюминесцентная (EL) подсветка

Электролюминесцентная подсветка обеспечивает равномерное освещение и выполняется в тонком и легком конструктиве (рис. 2).

Рис. 2. Конструктив электролюминесцентной подсветки

Такая подсветка обеспечивает получение различных цветов, в том числе белого, чаще всего используемого в LCD. Потребление при электролюминесцентной подсветке относительно мало, однако для ее организации необходим источник переменного напряжения 80…100 В частотой около 400 Гц (типовое значение). В качестве такого источника используют преобразователи DC/DC, трансформирующие напряжение постоянного тока 5, 12 или 24 В в переменное напряжение требуемой величины. Это наиболее экономичный с точки зрения потребления тип подсветки, и он чаще всего используется в устройствах с батарейным питанием. Срок жизни электролюминесцентной подсветки (снижение яркости наполовину от исходной) составляет порядка 3…5 тыс. часов и зависит от установленной яркости свечения (рис. 3).

Рис. 3. Срок жизни EL-подсветки, зависимость срока жизни от установленной яркости

Отличительные особенности электролюминесцентной подсветки:

  • плоский источник света с максимальной толщиной 1,3 мм (1,5 мм с учетом выводов) обеспечивает равномерную подсветку большой площади;
  • широкий диапазон напряжений питания переменного тока (максимальное значение 150 В) частотой 60…1000 Гц. При наличии повышающих преобразователей возможно питание от одной батареи с напряжением 1,5 В;
  • цвет свечения: зелено-голубой, желто-зеленый и белый;
  • рабочие характеристики типовых модулей питания: выходное напряжение 110 В частотой 400 Гц; ток нагрузки 8 мА (при Ta = 20 °C и относительной влажности 60 %);
  • диапазон рабочих температур - от 0 до 50 °C;
  • диапазон температур хранения от - от –20 до 60 °C.

Светодиодная (LED) подсветка

Светодиодная подсветка характеризуется самым длительным сроком службы - минимум 50 тыс. часов - и большей, чем у EL-подсветки, яркостью. Подсветка обеспечивается твердотельными приборами и, следовательно, может работать непосредственно от источника напряжения 5 В без использования преобразователей. Однако для ограничения тока через LED необходима установка токоограничительных резисторов. Цепочка светодиодов располагается вдоль боковых поверхностей дисплея или в виде матрицы под диффузором (рассеивателем) и обеспечивает яркую равномерную подсветку (рис. 4, а, б).

Рис. 4. Конструктивы матричной и боковой LED-подсветки

Боковая подсветка используется в модулях с количеством знакомест в строке до 20. При количестве знакомест свыше 20 в центре LCD образуется более темная, чем на краях, область. Для устранения этого недостатка применяют специальные меры, например дополнительную подсветку сверху.

Матричная LED-подсветка обеспечивает более яркий и равномерный свет. При разработке такой подсветки определяющим фактором является потребление. Не рекомендуется ее использовать в устройствах с батарейным питанием, в которых требуется постоянно включенная подсветка.

Светодиоды LED-подсветки работают при напряжении питания 4,2 В (типовое значение). Потребление подсветки определяется количеством включенных светодиодов, и, следовательно, с увеличением размера дисплея растет потребление, составляющее от 30 до 200 мА и более.

Цвет LED-подсветки может быть разным, в том числе и белым, но чаще всего используется желто-зеленая подсветка. Ее светоизлучение выше, чем у EL-подсветки. Возможно управление яркостью свечения посредством потенциометра или ШИМ-регулятора.

Принимая во внимание стоимость преобразователей, используемых с EL, применение LED-подсветки более экономично. Толщина модуля с LED-подсветкой на 2–4 мм больше, чем у модуля с EL-подсветкой или без подсветки.

Отличительные особенности светодиодной подсветки:

  • низкое напряжение питания, нет необходимости использовать специальные преобразователи;
  • длительный жизненный цикл - в среднем свыше 100 тыс. часов;
  • возможность подсветки красного, зеленого, оранжевого и белого цветов или многоцветной подсветки (с переключением);
  • боковая или матричная подсветка;
  • типовое напряжение питания - 4,2 В; потребление 30 до - 200 мА и выше; яркость - 250 кд/м;
  • отсутствие генерации шумов.

Подсветка флуоресцентными лампами с холодным катодом (CCFL)

Для CCFL-подсветки характерны относительно малое потребление и очень яркий белый свет. Используются две технологии: прямая и боковая подсветки (рис 5, а, б).

Рис. 5. Конструктивы прямой и боковой подсветки флуоресцентными лампами с холодным катодом

В обоих случаях источником света являются флуоресцентные лампы с холодным катодом (источники локального светового пятна), свет от которых по всей площади экрана распределяется диффузорами (diffuser) и световодами (light guide). Боковая подсветка позволяет реализовать модули малой толщины и с меньшим потреблением. CCFL-подсветка используется в первую очередь в графических LCD, и срок службы СCFL-подсветки выше, чем у EL-подсветки - до 10–15 тыс. часов.

Посредством CCFL обеспечивается подсветка больших поверхностей, поэтому она используется преимущественно в больших плоскопанельных дисплеях. Большим достоинством CCFL является возможность получения бумажно-белого цвета, что делает CCFL практически единственным источником подсветки цветных дисплеев. Для работы флуоресцентных ламп необходимы преобразователи с выходным напряжением переменного тока от 270 до 300 В.

Отличительные особенности подсветки флуоресцентными лампами с холодным катодом (CCFL):

  • высокая яркость;
  • долговечность;
  • малое потребление;
  • излучение белого цвета;
  • прямая и боковая подсветка;
  • используется с многоцветными и/или точечно-матричными модулями ЖК-дисплеев.
  • В табл. 1–3 приводятся характеристики флуоресцентных ламп с холодным катодом.

    Таблица 1. Максимальные значения

    Таблица 2. Электрические характеристики

    Таблица 3. Оптические характеристики

    В приведенной ниже табл. 4 даны сравнительные характеристики трех основных типов подсветки и их основные области применения.

    Таблица 4.

    Тип подсветки Использо-
    вание, в зависимости от условий освещения
    Потребление Стоимость Генерация RFI Управление яркостью Примечания
    Нет Неприменимо в условиях плохой освещенности Наилучшее (не потребляет по своей природе) Наименьшая Отсутствует Не используется
    EL Очень хорошее 30 мВт Средняя Незначительная (на малых частотах) Фиксированная яркость Предпочти
    тельна для устройств с батарейным питанием
    LED Применяется при любых условиях освещенности Хорошее 60 мВт Средняя Отсутствует Регулируется в широком диапазоне Чаще всего используется в небольших дисплеях
    CCFL Не применяется в условиях яркого освещения Существенное 700 мВт Самая высокая Иногда (на высокой частоте) Регулируется в ограниченном диапазоне Чаще всего используется в больших графических дисплеях

    Отличительная черта такой подсветки в её равномерном распределении по экрану. Если суть обычной LED подсветки это светодиод где нибудь сбоку циферблата, то при электролюминесцентном варианте загорается либо весь фон, кроме цифр, либо же сами цифры, кроме фона.

    В чём же суть такого вида подсветки и как она работает. Стоит отметить, что возможно это благодаря эффекту электролюминесценции - люминесценции, возбуждаемой электрическим полем. Происходит это благодаря излучательной рекомбинации электронов и полупроводниковых дырок. Электроны в возбуждённом состоянии отдают свою энергию в виде фотонов. В качестве материала для панелей чаще всего используют сульфиды цинка, полупроводники III-V InP, GaAs, GaN. Эффект был открыт в XX веке и получил широкое применение в его второй половине. На фото - ночник с использованием данной технологии. А на фото ниже - приборная панель автомобиля Doge Charger. Именно Chrysler стала первым в мире производителем автомобилей, который внедрил технологию электролюминесцентной подсветки в производство авто.

    Во многих моделях дешёвых часов из-за конструктивной особенности циферблата при севшей батарейке LED подсветка не способна осветить стрелки или цифры. В случае ЭЛ подсветки даже при слабом заряде экран либо цифры всё таки светиться будут, хоть и слабо. Но этого будет вполне достаточно, чтобы определить время в ночное время суток. По этой же причине, EL подсветка нашла широкое применение в электро-бытовых приборах, подсветке шкал и в военной технике. Количество потребляемой ею энергии намного меньше привычных осветительных приборов.

    Электролюминесцентная подсветка широко применяется в электронных часах таких фирм, как и Shark. Но и в обычных кварцевых часах (со стрелками) можно встерить эту технологию.

    Так, например, почти все модели часов американской фирмы Timex идут со встроенной ЭЛ подсветкой. Их технология запатентована и называется Indiglo.

    О подсветке комнаты светодиодной лентой, а так же топиками о подсветке системников, столов и прочего.

    Понятно, что это не совсем хабратема, но увидев число комментариев к таким публикациям я удивился и решил, что несправедливо обойдена одна интересная, на мой взгляд, технология. Ее называют «холодный неон». Опробовано в нашем интернет-магазине люминофора .

    Большинство используют для неяркой подсветки в автомобилях. Интересно смотрятся подсвеченные велосипеды (+ небольшой блок питания от двух батареек – хватает на несколько часов свечения) или кроссовки. Фото не мои. Последнее фото - блок питания на двух пальчиковых батарейках с разъемом для подключения и моток холодного неона (5 метров).


    Я использовал эту штуку вместо гирлянды на ноутбуке в офисе. К сожалению, фото не сохранил. Использовал USB-распайку для подключения и 5-метровый кусок провода.

    Принцип действия очень прост: токонесущий провод, покрытый люминофором, поверх которого наматываются тонкие контактные проводки. При прохождении тока по проводкам индуцируется слабое магнитное поле, которое приводит к эффекту электролюминесценции.

    Сам люминофор обычно имеет желто-зеленое свечение, поэтому для разнообразия цветов все это сверху покрывается «прозрачно-цветной» ПВХ-трубкой.

    Чем это интересно:

    • крайне низкое энергопотребление (10-15 Вт/м в зависимости от толщины). Толщина обычно от 0,8 до 5 мм
    • можно использовать в помещениях с большой влажностью
    • можно найти любой длины - продается в катушках
    • практически не нагревается при длительном свечении
    • есть не только провода, но и ленты и даже панели

    Подключить очень просто даже к USB или батарейкам. Единственное, что люминофор, которым покрыт провод, при неосторожном обращении может треснуть, поэтому перегибать провод нельзя. Но даже в этом случае он продолжит работать (в поврежденном месте просто появится темное пятно).

    Паять холодный неон просто, а вот очистить его так, чтобы не оторвать тонкие контактные проводки с первого раза у меня не получилось.

    P.S. У меня в загашнике осталось несколько отрезков холодного неона с различными вариантами подключения – USB, батарейки и модуль для авто.

    UPD: у меня есть еще несколько материалов, которые связаны с люминофорами и их применением. Если сообществу интересна эта тема, я подготовлю статьи к специфике Хабра. Жду комментариев.

    Общие сведения о жидкокристаллических дисплеях

    Жидкокристаллические дисплеи и панели

    Жидкокристаллические (LCD) дисплеи обладают таким же светоклапанным принципом действия, как и рассмотренные выше жидкокристаллические индикаторы. Они могут работать либо на отражение, либо на просвет. Жидкие кристаллы можно отнести к одному из трёх видов: смектическим, нематическим или холестерическим.

    Смектические жидкие кристаллы формируют слои, в которых молекулы имеют упорядоченное положение.

    Нематические жидкие кристаллы обладают хаотичным расположением молекул и непрозрачным для проходящего света дисплеем лишь до тех пор, пока молекулы не будут помещены в электрическое поле. Нематические жидкие кристаллы нашли широкое применение в одноцветных индикаторах и чёрно-белых дисплеях.

    Холестерические жидкие кристаллы под воздействием электрического поля формируют слои, в которых молекулы смещены на один и тот же угол в пространстве. Это обстоятельство позволяет при наличии источника белого света получать цветное изображение на экране дисплея. Таким образом, в цветных жидкокристаллических дисплеях применяют холестерические жидкие кристаллы.

    По причине того, что жидкие кристаллы не генерируют фотоны, для регистрации изображения необходим внешний источник освещения. Его располагают либо за жидкокристаллическим дисплеем, либо перед ним, и тогда обычно можно полагать, что он работает на просвет, либо сбоку дисплея, и в этом случае иногда допустимо считать, что дисплей работает на отражение. Если по конструктивным соображениям источник света размещён сбоку от дисплея, то благодаря системе зеркал излучение попадает на его рабочую зону.

    Электролюминесцентную подсветку жидкокристаллических дисплеев обеспечивают электролюминесцентные лампы (EL), свет которых попадает на полупрозрачный отражатель, а затем на противоположную от стороны обзора пользователем сторону дисплея. Для питания электролюминесцентной лампы необходим источник питания, вырабатывающий переменное напряжение частотой в районе 400 Гц и величиной обычно от 80 В до 100 В. При этом через лампу протекает ток примерно от десятка до нескольких десятков миллиампер. Следовательно, электролюминесцентная подсветка экономична и рекомендована для портативных устройств. Достоинства электролюминесцентной подсветки: равномерное освещение дисплея, высокая долговечность (время эксплуатации не менее 3000 … 5000 часов), толщина конструкции от 1,5 мм, типовой диапазон рабочих температур от 0 до 50 °C. Недостатки: чем выше яркость электролюминесцентных ламп подсветки, тем меньше время их наработки на отказ. А стоимость ламп весьма высока. Для питания электролюминесцентной лампы от низковольтного источника питания, например, аккумулятора или батареи, необходим импульсный преобразователь.

    «Да будет свет!»

    Подсветки в часах – необходимая составляющая каждодневной жизни, без неё уже невозможно представить современные наручные часы. Это реальность, в которой качество изготовления подсветки решает всё.

    Сегодня в наручных часах часто встречается электролюминесцентная подсветка, но обороты популярности день ото дня набирает и подсветка тритиевая .

    Подсветка Indiglo , представленная американской компанией Timex в 1992 году, как нельзя лучше подходит в качестве примера электролюминесцентной подсветки . Нажимаем на кнопку, электричество преобразуется в свет посредством воздействия напряжения в 100-200 вольт на атомы фосфора. Конечно, тут свою роль играет преобразователь напряжения (1:100), без которого получение даже ста вольт было бы невозможным. Получив заряд, атомы фосфора выделяют фотоны, они и подсвечивают циферблат. Само название «Indiglo» произошло от слова «Indigo» . Именно цветом индиго (нечто среднее между синим и фиолетовым) подсвечивался циферблат модели часов семейства Ironman . Эта серия часов стала первой в истории компании Timex , оснащённой подсветкой Indiglo .


    Вездесущая японская корпорация Casio не могла остаться в стороне, в 1995 году ответив на изобретение американцев подсветкой Illuminator . Подсветка Casio Illuminator по своему устройству схожа с подсветкой Indiglo . В Японии подсветка Illuminator носит название «Fox Fire» .


    Только стрелки и метки отдельно взятого циферблата могут быть оснащены тритиевой подсветкой , тогда как электролюминесцентная подсветка освещает циферблат полностью. Но не торопитесь делать скоропостижные выводы!

    Применение тритиевой подсветки в циферблатах является процессом куда более сложным, чем установка электролюминесцентной подсветки. Тритиевая подсветка не требует нажатия кнопок и не использует вспомогательные источники энергии – будь то батарея часов, или энергия солнечного света. Соответственно, такая подсветка не влияет на запас «жизненной силы» энергоносителя часов.

    Тритий – радиоактивный изотоп водорода, использующийся в термоядерном оружии, как источник нейтронов и горючее. «Всё, с меня хватит, оставьте часы с такой подсветкой себе, а я лучше выберу безобидную электролюминесцентную подсветку!» - подумаете вы. И будете неправы.

    Тритий не представляет радиационной опасности, ведь он заключён в герметичные ёмкости из боросиликатного стекла. Но даже если циферблат часов вдруг треснул, а герметичная ёмкость с тритием была повреждена, то нашему здоровью всё равно ничего не будет угрожать. В ёмкостях, расположенных на циферблатах часов, содержится сравнительно небольшое количество трития, которое при утечке успеет выйти в атмосферу без пагубных последствий для человека. Самое главное – не вдыхать и не глотать тритий. Особенно тогда, когда утечка произошла из большой ёмкости.

    Долгий срок службы без всякой подзарядки – вот главный козырь тритиевой подсветки. Тритиевая подсветка способна прослужить целых 25 лет. За это время тритий в ёмкостях будет подвержен радиоактивному бета-распаду, что заставляет появившиеся электроны воздействовать на атомы люминофора. Именно этот процесс и даёт яркое зелёное свечение стрелок и меток, способное выручить владельца часов при любых обстоятельствах.

    К слову, тритиевая подсветка может быть представлена самыми разными цветами, не только зелёным, но и темно-синим, жёлтым, оранжевым, красным, белым . В часовой промышленности, однако, применяется именно зелёный, ведь человеческий глаз воспринимает его, как самый яркий (интенсивность – 100%). Тритиевая подсветка потеряет половину своей яркости за 12 лет, а за 25 лет службы «исхудает» на 80% яркости.

    Пользующиеся устойчивым спросом у военных и пожарных часы Traser примечательны не только своей прочностью, но и тритиевой подсветкой trigalight . Не отстаёт и известная компания Luminox , дающая гарантию 25 лет на беспрерывную работу тритиевой подсветки в своих часах.

    Отдельного упоминания достойна подсветка Super LumiNova . Данная система заявила о себе в 1993 году , чётко обозначив свои положительные свойства. Работа подсветки SuperLumiNova стала возможной благодаря алюминату стронция, веществу, наносимому на стрелки и метки часовых циферблатов. Система SuperLumiNova не содержит радиоактивных веществ, а значит, не потеряет свои качества с течением времени, как это происходит с тритиевой подсветкой. Для подсветки Super LumiNova важны периодические «встречи» с солнечным или искусственным светом, именно они заряжают светящееся покрытие стрелок и меток нужной энергией.

    Некоторые часы не только обладают продвинутой системой освещения циферблата, но и могут быть использованы в качестве самостоятельного источника освещения. Мужские часы – лучший тому пример.


    Их циферблат подсвечивается светодиодом высокой мощности, обеспечивающим отличное считывание показаний часов в темноте. Но стоит нам выйти за грани циферблата, и о себе напоминает встроенный в корпус фонарь, работающий в трёх режимах. С подробностями системы освещения часов Victorinox Swiss Army Night Vision можно ознакомиться в отдельной статье .

    Разнообразные системы подсветок в часах сегодня способны ответить потребностям многих людей. Практичная электролюминесцентная подсветка в часах Timex , Casio способствует появлению привлекательных цен на модели этих компаний. Более сложная в изготовлении тритиевая подсветка ждёт на циферблатах часов Traser и Luminox .

    Простота и доступность, или технические изыски и новшества? Выбор за вами!