Классификация электронных приборов. Электронные приборы; их статические характеристики и рабочие параметры, режимы работы Классификация электронных приборов

Основным качественным показателем электронных устройств является надежность их работы, которая определяется надежностью отдельных деталей и узлов.

Под надежностью понимается свойство системы (изделия), связанное с ее безотказностью, долговечностью и ремонтопригодностью и обеспечивающее выполнение заданных функций.

Безотказность определяет свойство системы (изделия) непрерывно сохранять работоспособность в определенных режимах и условиях эксплуатации.

Долговечность - это свойство изделия или системы длительно сохранять работоспособность в определенных режимах и условиях эксплуатации. Долговечность количественно оценивается техническим ресурсом, представляющим собой сумму интервалов времени безотказной работы за период эксплуатации до разрушения или другого предельного состояния.

Ремонтопригодность - это свойство изделия или системы, характеризующее ее приспособленность к предупреждению, обнаружению и устранению отказов.

Отказом называется такая неисправность, без устранения которой невозможно дальнейшее выполнение аппаратурой всех или хотя бы одной из ее основных функций. Отказы могут быть полными и частичными (условными), внезапными и постепенными, зависимыми и независимыми. Физический смысл внезапного отказа сводится к тому, что в результате скачкообразного изменения какого-либо параметра элемент схемы теряет свойства, необходимые для обеспечения нормальной работы. К полным отказам можно отнести отказы, связанные с полной потерей работоспособности прибора вследствие обрывов или коротких замыканий внутренних или внешних выводов, пробоя PN-перехода и т. д.

Причинами внезапных отказов могут быть конструктивные недоработки, скрытые производственные дефекты, нарушение правил эксплуатации и внешние воздействия, не свойственные нормальной эксплуатации (удары, вибрации, перегрев, повышенное напряжение и т. д.). Такие отказы чаще всего возникают в начальный период эксплуатации.

Постепенные отказы связаны с изменением параметров приборов (изделия) во времени и проявляются в виде выходов параметров за пределы норм, установленных в технических условиях. Постепенные отказы обусловлены несовершенством технологии или ее нарушением в процессе изготовления приборов.

Основная часть отказов полупроводниковых приборов происходит за счет постепенного ухудшения параметров, в основном вызванного изменением состояния поверхности полупроводников. Попадание влаги или кислорода на поверхность кристалла приводит к образованию проводящих каналов на поверхности полупроводника, что может вызвать увеличение обратного тока перехода и уменьшение коэффициента передачи тока транзистора. Вследствие этого приборы, выполненные по планарной технологии, имеют более высокую стабильность параметров, так как у них поверхность полупроводников покрыта защитной окисной пленкой, нежели приборы, выполненные по сплавной технологии.

В электровакуумных приборах такие отказы могут возникать из-за ухудшения вакуума лампы и уменьшения эмиссии катода во времени. Постепенные отказы могут быть частичными или условными , где изменение параметров прибора в одних случаях могут вызвать отказ работы схемы, в других - только частичное изменение параметров. За критерий условных отказов принимают изменение основных параметров (для транзисторов это обычно изменение коэффициента передачи и обратного тока коллектора) в определенное число раз сверх норм, предусмотренных техническими условиями. Правильно рассчитанная схема допускает значительные изменения параметров прибора, поэтому условно отказавшие приборы могут не вызвать отказа ее работы.

Для количественной оценки надежности используют понятие интенсивность (опасность) отказов, под которой понимают отношение числа отказов приборов в единицу времени к числу исправно работающих приборов. Интенсивность отказов

где n - число отказавших приборов за время t в часах; N -общее число работающих приборов. Так как обычно n N, то

Для оценки надежности электронных приборов (устройств) пользуются понятием: вероятность безотказной работы p за определенный интервал времени эксплуатации

Рис. 10.5. Типовая кривая интенсивности отказов

Типовая кривая интенсивности отказов приведена на рис. 10.5. Эту кривую можно разделить на три участка. Участок 1 характеризуется повышенной интенсивностью внезапных отказов, которые являются следствием низкого качества изготовления, выявившегося с началом эксплуатации изделия. Участок 2 соответствует нормальному сроку эксплуатации. Интенсивность отказов здесь уменьшается, так как период приработки закончился, а износ приборов еще не наступил. Участок 3 характеризуется новым нарастанием интенсивности отказов, являющихся результатом старения или износа элементов (например, потерей эмиссии катода электровакуумного прибора). Для большинства типов полупроводниковых приборов не удалось установить наличие области износа, что объясняется их большим сроком службы.

Вторая часть лекционного курса "Физическая электроника" - "Электронные приборы" посвящена основам функционирования вакуумных, твердотельных и газовых базовых электронных приборов. Курс состоит из лекций и лабораторного практикума.

Введение

Понятие электронных приборов. Разделение электронных приборов по общности физических процессов, лежащих в их основе. Основные функции. Классификация электронных приборов. Понятие характеристик электронных приборов.

Раздел 1. Вакуумные приборы

1.1. Вакуумные диоды

Диод – нелинейный двухполюсник. Эмиссия электронов с катода. Распределение потенциала в плоском диоде. ВАХ идеального вакуумного диода. Закон степени 3/2. Получение закона степени 3/2 из системы гидродинамических уравнений. Получение закона степени 3/2 с помощью метода анализа размерностей. ВАХ реального диода. Параметры диода – внутреннее сопротивление, крутизна характеристики, коэффициент усиления. Ток насыщения. Нагрузочная прямая. Мощность рассеяния на аноде. Параметры предельно допустимого режима.

1.2. Электронные лампы с сеткой.

Распределение потенциала и электрического поля в триоде. Управление током в триоде.

Эквивалентный диод. Действующее напряжение. Закон степени 3/2 для триода. Прямая и обратная проницаемость.

Семейства статических анодных и анодно-сеточных характеристик. Параметры триода. Внутреннее уравнение лампы. Семейство реальных характеристик. Островной эффект. Сеточные токи при положительном и отрицательном сеточном напряжении. Коэффициент токораспределения. Сеточные характеристики.

Динамические характеристики и параметры триода. Межэлектродные емкости. Предельно допустимая мощность. Режимы работы триода. Усилительный каскад. Схема с автоматическим смещением.

Недостатки триодов. Многосеточные лампы. Динатронный эффект. Лучевой тетрод. Работа тетрода. Пентод. Рабочий режим пентодов. Схемы включения. Эквивалентные схемы триодов и многосеточных ламп.

1.3. Электронно-лучевые приборы.

Устройство электронно-лучевой трубки. Электронный прожектор. Электростатические фокусирующие системы. Магнитостатические фокусирующие системы. Отклоняющие системы. Статическая чувствительность электронно-лучевых трубок. Искажение изображения. Развертка. Наблюдение переменных напряжений с помощью осциллографа. ЭЛТ-монитор.

1.4. Элементы вакуумной микроэлектроники.

Автоэлектронная эмиссия. Прохождение электронов через потенциальный барьер. Закон Фаулера-Нордгейма. Прямые Фаулера-Нордгейма. Тонкопленочные автоэмиссионные катоды, их изготовление. Экспериментальное определение их основных параметров. Конструкция вакуумного микродиода. Микротриод как элемент усилительной схемы. Сканирующий туннельный микроскоп. МАС. Другие применения автоэлектронной эмиссии.

Раздел 2. Полупроводниковые приборы.

2.1. Полупроводниковые диоды.

Типы полупроводников. Зонные диаграммы. Диффузионный и дрейфовый токи. р-n переход.

Распределение концентрации носителей заряда. ВАХ идеального диода. Формула Шокли. Тепловой ток.

ВАХ реального диода (ток рекомбинации, влияние сопротивления базы, ток генерации, ток утечки).

Емкости p-n перехода. Пробой p-n перехода. Влияние температуры на ВАХ диода.

Рабочий режим диода.

Применение полупроводниковых диодов для выпрямления переменного тока.

Переходные процессы в p-n переходе; использование диодов в качестве переключателей.

Туннельный и обращенный диоды.

2.2. Транзисторы.

2.2.1. Биполярные транзисторы. Устройство и принцип действия. Структура транзистора. Токи и распределения носителей. Режимы работы. Схемы включения. Физические параметры транзисторов. Статические характеристики. Работа транзистора на высоких частотах. Работа транзисторов в импульсном (ключевом) режиме. Преобразование частоты полупроводниковыми приборами.

2.2.2. Полевые транзисторы. Устройство, принцип действия. Статические управляющие и выходные характеристики. Параметры. Схемы включения. Схемы питания транзистора.

2.2.3. МОП-транзисторы. Общий принцип работы. Статические характеристики.

2.3. Операционные усилители.

Принцип действия ОУ. Линейная модель ОУ. Основные параметры и характеристики. Идеальный операционный усилитель.

Класс 2lg, 13,-„

СС Ср № 63799

4 рл И;,-..:,и- -., „р,Р анн оса

Зар гГГслГрировано в F>cg.c изо,",ретениГс Госплана СССР (\ г l.гв Г.

А. Г. Александров

Заявлено 31 января 1941 года в Наркомэлектропром эа X 40368 (304420) Опубликовано 31 гяая 1945 года

Настоящим изобретением предлагаетгя способ снятия статических характеристик электронных приборов с плавным электростатическим управлением.

Для ряда практических целей бывает необходимо иметь характеристики указанных приборов, снятые в зависимости от потенциала управляющего электрода при неизменных потенциалах на прочих электродах. Для ламп малой мощности эти характеристики обычно снимаются простым точечным способом. 3а последнее время появился ряд специальных устройств, позволяющих на экране электронного осциллоскопа получать сразу семейство статических характеристик.

Для мощных электродных ламп, например, мощных генераторных ламп, вопрос о снятии статических характеристик является более серьезным, так как их электроды, не рассчитанные на большие перегрузки, не в состоянии выдержать тех мощностей, которые могут рассеиваться на них при снятии полных статических характеристик.

Далее имеется ряд таких ламп, которые не в состоянии выдержать даже тех облегченных режимов, в которых они находились бы в специальных схемах для снятия семейства статических характеристик осциллоскопическим методом.

В ряде специальных физических исследований активированных сложных катодов, например, оксидных, бывает необходимо вести измерение тока электронной эмиссии в таких режимах, чтооы катод заметно не нагревался за счет наложения измеряемого тока на ток накала.

Указанные трудности легко разрешаются использованием предлагаемого способа, сущность которого может быть понята из последующего описания и рассмотрения фиг. 1 — 8 чертежа.

На фиг. 1 показана исследуемая электронная лампа 1, в цепь управляющего электрода которой периодически подаются узкие импульсы напряжения от сопротивления 14, включенного последовательно с источником смещаю щего сеточного напряжения о, заблокированног0 емкостью 9.

Периодические узкие импульсы напряжения получаются от конденсатора 25, заряжаемого от регулируеМого источника постоянного тока 21 через потенциометр 22 и

¹ 63799 сопротивления 28 и 24. Указанный конденсатор периодически вынужденно разряжается через тиратрон

26, периодически вынужденно зажигаемый при помощи пикового трансформатора 27, вторичная цепь которого включена последовательно с источником сме цающего напряжения 30 через потенциометр 29.

Для ограничения тока сетки в цепь сетки этого тиратрона введено ограничительное сопротивление 28.

Разряд конденсатора производится на безиндукционное сопротивление

14, включенное в цепь управляющего электрода исследуемой электронной лампы. Потенциалы на другие электроды подаются от источников постоянного тока 2, 3, 4 и т. д., которые могут быть регулируемы. Эти источники заблокированы достаточно большими емкостями 6, 7, 8 и т. д. с той целью, чтобы при прохождении через указанные электроды импульсов тока не было заметного снижения потенциалов на электродах и тем самым искажения снимаемых характеристик. Это обстоятельство имеет особенное значение в тех случаях, когда источники, питающие цепи электродов, маломощны и имеют большие внутренние сопротивления.

Напряжения источников 2, 3, 4, 5 могут быть измерены при помощи вольтметров постоянного тока 31, 82, 88, 34. В цепи электродов введены заранее известные безиндукционные сопротивления 10, 11, 12, 18, на которых получаются узкие импульсы падения напряжения при прохождении через них узких импульсов токов. Эти падения напряжения при помощи коммутатора 15 подаются к вспомогательному устройству, при помощи которого они могут быть поочередно измерены.

Вспомогательное измерительное устройство состоит из источника постоянного тока 17, потенциометра

16, вольтметра постоянного тока 18, вентиля 20 и индикатора тока 35.

На фиг. 2 сплошной линией показана во времени кривая напряжения, имеющегося непосредственно между сеткой и катодом тиратрона 26. Пунктирной линией на этой фигуре показана во времени кривая смещающего напряжения на потенциометре 29.

На фиг. 3 показана во времени кривая напряжения на конденсаторе 25, заряжающегося в течение времени 1, от источника 21 и в течение времени 1 разряжающегося на сопротивление 4. Таким образом период колебания равен t,+t,=Т.

Этот период, в свою очередь,равен периоду колебаний напряжения, подводимого к трансформатору 27. Колебания взяты вынужденными, так как в этом случае получается более четкая картина и обеспечиваются более точные измерения. Попутно следует указать еще и на то обстоятельство, что использование периодических колебаний имеет несомненные преимущества перед единичным импульсом. Дело в том, что метод периодических импульсов безусловно обеспечивает большую точность, отбрасывает элемент случайности и кроме того в значительной: мере экономит время, затрачиваемое на измерение.

На фиг. 4 показана во времени кривая напряжения, имеющегося непосредственно между сеткой и катодом исследуемой лампы. Как видно из этого графика, кривая сеточного напряжения имеет вид весьма узких импульсов. Максимальное значение кривой импульсов может быть легко регулируемо" либо изменением напряжения при помощи потенциометра 22, либо же изменением напряжения источника

5. Таким образом можно изменять" напряжение управляющего электрода (сетки).

На фиг. 5 показана во времени примерная кривая импульса тока в цепи любого из электродов. Эта кривая соответствует кривой фиг. 4.На фиг. 6 схематично показана во времени примерная кривая импульса в цепи какого-либо из электродов с сильно растянутой. осью времени. На этом же графике показаны пунктирные линии 2, 8, 4„ относящиеся к напряжению на по63799 тенциометре 16. Здесь показаны три случая. Линия 2 относится к тому случаю, когда напряжение на потенциометре 16 больше максимального значения на соответствующем безиндукцио ином сопротивлении в цепи того или иного электрода, т. е. Й„>1„,Р.

В этом случае вентиль 20 будет заперт, так как его анод отрицателен по отношению к катоду.

Кривая 2 на фиг. 6 относится к тому случаю, когда П„= I„,Ь.

Этот случай является критическим, для которого и производится измерение. Измерив при помощи вольтметра 18 напряжение на потенциометре в этом случае и, зная заранее данное сопротивление К легко определить значение импульса тока 1„,.

Кривая 4 на фиг. 6 относится к тому слiчаю, когда U„(I„,Â.

В этом случае анод вентиля 20 будет положителен по отношению к его катоду и через него пойдет ток, среднее значение которого будет измерено прибором 85. Появление тока будет служить признаком того, что критический режим перейден и поэтому требуется увеличивать напряжение на потенциометре 16.

В качестве вентиля 20 можно взять самый маленький кенотрон (диод), либо же триод, у которого сетка присоединена к аноду. Накал кенотрона следует питать от источника постоянного тока, причем общая точка должна быть выполнена на минусовом конце накального источника (для избежания влияния неэквипотенциальности катода и начальных скоростей электронов).

Кроме компенсационного метода измерения импульсов тока может быть использован и осциллоскопический или осциллографический метод. Для этой цели показанные пунктиром на фиг. 1 проводники

86 присоединяются к паре отклоняющих пластин осциллоскопа, дающих отклонение электронного луча по вертикали; другая же пара отклоня ющих пластин присоединяется к источнику с пилообразной кривой напряжения, причем этот источник синхронизирован с источником 27, подающим переменное напряжение в цепь сетки тиратрона

26. На экране осциллоскопа при этом появятся четкие импульсы падения напряжения (см. фиг. 5}, измерив которые при помощи предварительной градуировки и зн; я заранее значения безиндукционных сопротивлений в цепях электродов, можно определить и самые значения импульсов тока, При этом измерении обязательно следует применять электронный осцнлло коп или осциллограф. Применение шлейфного электромагнитного осциллографа должно дать значительные погрешности из-;-.а большой инерционности системы.

Способ подачи импульсов в цепь управляюшего электрода и измерения токов в цепи других электродов имеет ряд существенных преимуществ. Прежде всего в значительной мере у.меньшается мощность тиратрона, разряжающего конденсатор. Затем получается возможность измерения токов в цепи любого электрода при любых потенциалах на других электродах, чего нельзя иметь в том случае, когда импульс тока измеряется в цепи того электрода, к которому подводится импульс потенциала.

При настоящем способе лампа „отпирается" лишь в те моменты, когда на управляющий электрод подается импульс потенциала. В остальное время на управляю:цем электроде находится достаточно большой (по абсолютному значению) отрицательный потенциал.

Примерные статические характеристики, получаемые предлагаемым способом, приводятся на фигурах

Предмет изобретения

1. Способ снятия статических характеристик электронных приборов с плавным электростатическим управлением, отли чающи и с я тем, что в цепь управляющего электрода последовательно с регулируемым напряжением смещения пе№ 63799 риодически подают имеющее форму узких импульсов напряжение от заряжаемого от постороннего источника и периодически вынужденно разряжаемого при помощи тират рона конденсатора, а к другим электродам обследуемого электронного прибора через заранее известные безиндукционные сопротивления прикладывают регулируемые напряжения от источников постоянного тока, заблокированных емкостями, причем, получающиеся при этом MQKcHMBJlbHblp. значенИя импульсов токов в цепях этих электродов измеряют по импульсам падения напряжения на указанных выше сопротивлениях, к которым через вентиль и индикатор тока прикладывают регулируемое компенсирующее напряжениее.

2. Устройство для осуществления способа по п. 1, отличающееся применением для измерения максимальных значений импульсов в цепях электродов обследуемой электронной лампы электронного.осциллоскопа или осциллографа., одна пара отклоняющих электродо", которого присоединена к концам или части сопротивлений, введенных в цепи электродов, а к другой паре отклоняющих электродов подведено пилообразное напряжение, синхронизованное с источником переменного напряжения, подаваемого в цепь управляющего электрода тиратрона, периодически разряжающего конденсатор.

Техн. редактор М. В. Снольякьва

Отв. редактор Д. А. Михаилов

Типография Госпланнздата, ни. Воровского, Калуга

Л!49953. Подписано к печати 25 XI 1946 г. Тираж 500 экз. Цена 65 коп. Зак. 325

Вот ты на радостях идешь к чайнику с мыслью хлопнуть кружку чая с баранкой в честь только что собранного устройства, но оно вдруг перестало работать. При этом видимых причин нет: конденсаторы целы, транзисторы вроде бы не дымятся, диоды тоже. Но при этом устройство не работает. Как быть? Можно воспользоваться вот таким простым алгоритмом поиска неисправности:

Монтажные "сопли"

"Сопли" -- это небольшие капли припоя, которые создают короткое замыкание между двумя разными дорожками на печатной плате. Во время домашней сборки такие неприятные капли припоя приводят к тому, что устройство либо просто не запускается, либо работает неправильно, либо, что хуже всего, после включения тут же сгорают дорогие детали.

Чтобы не допускать таких неприятных последствий перед включением собранного прибора следует внимательно проверить печатную плату на наличие замыканий между дорожками.

Приборы для диагностики устройств

Минимальный набор приборов для наладки и ремонта радиолюбительских конструкций состоит из , мультиметра и . В некоторых случаях можно обойтись только мультиметром. Но для более удобной отладки устройств желательно все же иметь осциллограф .

Для простых устройств такого набора хватает за глаза. Что касается, к примеру, отладки различных усилителей, то для их правильной настройки желательно иметь ещё и генератор сигналов .

Правильное питание -- залог успеха

Прежде, чем делать какие-либо выводы и работоспособности деталей, входящих в твою радиолюбительскую конструкцию, следует проверить правильное ли питание подаётся. Иной раз окажется, что проблема была в неверном питании. Если начинать проверку устройства с его питания, то можно сэкономить много времени на отладке, если причина была в нём.

Проверка диодов

Если в схеме есть диоды, то их следует один за одним внимательно проверить. Если они внешне целые, то следует выпаять один вывод диода и проверить его с помощью мультиметра, включенного в режим измерения сопротивления. При этом если полярность клем мультиметра совпадает с полярностью выводов диода (+ клемма к аноду, а - клемма к катоду), то мультиметр покажет приблизительно 500-600 Ом, а в обратном включении (- клемма к аноду, а + клемма к катоду) не покажет вообще ничего, будто там обрыв. Если же мультиметр показывает что-либо другое, то скорее всего диод вышел из строя и негоден.

Проверка конденсаторов и резисторов

Сгоревшие резисторы видно сразу -- они чернеют. Поэтому найти сгоревший резистор достаточно легко. Что касается кондесаторов, то их проверка сложней. Во-первых, как и в случае с резисторами, надо првоести их осмотр. Если они внешне не вызывают подозрений, тогда ихследует выпаять и проверить с помощью LRC-метра. Обычно выходят из строя электролитические конденсаторы. При этом они раздуваются, когда сгорают. Другая причина их выхода из строя -- время. Поэтому в старых приборах часто заменяют все электролитические конденсаторы.

Проверка транзисторов

Транзисторы проверяются аналогично диодам. Сначала проводится внешний осмотр и если он не вызывает подозрений, то транзистор проверяется с помощью мультиметра. Только клемы мультиметра включаются поочерёдно между базой-коллектором, базой-эммитером и коллектором-эммитером. Кстати, у транзисторов бывает интересная неисправность. При проверке транзистор в норме, но когда включается в схему и на неё подается питание, то через некоторое время схема перестает работать. Оказывается, что транзистор нагрелся и в нагретом состоянии ведёт себя как поломанный. Такой транзистор следует заменить.

Еще в 19 веке был открыт ряд физических явлений, природа которых обусловлена взаимодействием свободных электронов с электромагнитным полем и веществом. Такие явления получили названия электромагнитных. К ним относятся:

– испускание электронов накаленным телом – термоэлектронная эмиссия;

– испускание электронов веществом под воздействием фотонов (фотоэффект);

– испускание фотонов веществом под воздействием электронов (люминесценция);

– зависимость электронной проводимости цепи, состоящей из накаленного и ненакаленного электродов, разделенных вакуумным промежутком, от направления тока;

– ионизация разреженного газа при прохождении потока быстро движущихся электронов, сопровождающаяся резким увеличением электрической проводимости среды;

– наличие двух типов электропроводности полупроводника (электронной и дырочной), в зависимости от преобладания того или другого вида носителей заряда (электронов или дырок);

Перечисленные и многие другие электронные явления хорошо изучены и имеют практическое применение. Приборы, принцип действия которых основан на физических явлениях, связанных с движением электрически заряженных частиц в вакууме, газе или в твердом теле, называются электронными. Область науки и техники, которая занимается изучением и разработкой электронных приборов и устройств, называется электроникой.

Наиболее общим классификационным признаком является рабочая среда, в которой протекают основные физические процессы в приборе. Таким образом, различают электровакуумные, ионные (газоразрядные) и полупроводниковые приборы.

В электровакуумных приборах рабочее пространство изолировано от окружающей среды газонепроницаемой оболочкой – баллоном. Электрические процессы в этих приборах протекают в среде высокоразреженного газа с давлением порядка 10-6 мм рт. ст. К электровакуумным приборам относятся электронные лампы, электронно-лучевые, фотоэлектронные и сверхвысокочастотные приборы.

Ионными (газоразрядными) называют приборы, баллоны которых наполнены инертными газами (аргоном, неоном, криптоном и др.), их смесью, водородом или парами ртути. Давление газа в баллоне не велико: 10-10-5 мм рт. ст. Заполнение приборов газом позволяет пропустить через них значительно больший ток, чем это возможно в электровакуумном приборе при той же потребляемой мощности, что объясняется малым внутренним сопротивлением прибора, а следовательно, малым падением напряжения между анодом и катодом.

Конструкция и назначение ионных приборов весьма разнообразны. Большинство их типов применяется для выпрямления переменного тока (газотроны, игнитроны, тиристоры, ртутные вентили и др.). Используются они также для стабилизации постоянных напряжений (стабилитроны), в качестве электронных реле, переключающих устройств (ионные разрядники).


Наиболее общие функции, выполняемые электронными приборами, состоят в преобразовании информационных сигналов или энергии.

Само название «электронные приборы» указывает на то, что все процессы преобразования сигналов и энергии происходят либо за счёт движения электронов, либо при их непосредственном участии. Основными задачами электронного прибора как преобразователя информационных сигналов являются: усиление, генерирование, передача, накопление и хранение сигналов, а также выделение их на фоне шумов.

Электронные приборы можно классифицировать по их назначению, физическим свойствам, основным электрическим параметрам, конструктивнотехнологическим признакам, роду рабочей среды и т.д.

В зависимости от вида сигналов и способа обработки информации все существующие электронные приборы разделяют на электропреобразовательные, электросветовые, фотоэлектрические, термоэлектрические, акустоэлектрические и механоэлектрические.

Электропреобразовательные приборы представляют самую большую

группу электронных приборов. К ним относят различные типы диодов и транзисторов, тиристоры, газоразрядные, электровакуумные приборы.

К электросветовым относят светодиоды, люминесцентные конденсаторы, лазеры, электронно-лучевые трубки.

К фотоэлектрическим – фотодиоды, фототранзисторы, фототиристоры, солнечные батареи.

К термоэлектрическим – полупроводниковые диоды, транзисторы, термисторы.

Акустоэлектрические усилители, генераторы, фильтры, линии задержки на поверхностных акустических волнах относятся к акустическим приборам. В последнее время на стыке электроники и оптики сформировалась новая область техники – оптоэлектроника, привлекающая для решения задач формирования, хранения и обработки сигналов методы электроники и оптики.

В зависимости от выполняемых функций и назначения электронные приборы делят на выпрямительные, усилительные, генераторные, переключательные, индикаторные и др.

По диапазону частот – низкочастотные, высокочастотные, сверхвысокочастотные; по мощности – малой мощности, средней мощности и мощные.

Понятие режима электронного прибора включает в себя совокупность условий, определяющих его работу. Любой режим определяется совокупностью параметров. Различают электрический, механический, климатический режимы. Каждый из указанных режимов характеризуется своими параметрами. Оптимальные условия работы прибора при эксплуатации, испытаниях или измерениях его параметров определяются номинальным режимом.

Предельные параметры характеризуют предельно допустимые режимы работы. К ним относятся максимально допустимые значения напряжений на электродах прибора, максимально допустимая мощность, рассеиваемая прибором, и т.д. Различают статический и динамический режимы. Если прибор работает при постоянных значениях напряжений на электродах, такой режим называется статическим. В этом случае все параметры не меняются во времени. Режим работы прибора, при котором напряжение хотя бы на одном из электродов меняется во времени, называется динамическим.

Кроме параметров режима, различают параметры электронного прибора (например, коэффициент усиления, внутреннее сопротивление, междуэлектродные ёмкости и др.). Связь между изменениями токов и напряжений на электродах в статическом режиме описывается статическими характеристиками. Совокупность статических характеристик при фиксированных значениях третьего параметра называют семейством характеристик.

Тема 2. Физические явления полупроводниковой электроники

Полупроводниками в физике принято называть материалы с удельным сопротивлением r = 10 3 - 10 9 Ом×см, в отличие от проводников (металлов), которые имеют r < 10 4 Ом×см, и диэлектриков - материалов с r >10 10 Ом×см.

Полупроводники имеют собственную электропроводность, которая называется примесной при внесении примеси. Внося различные примеси, можно сформировать полупроводники с заданными свойствами.

В основе работы большинства полупроводниковых приборов и активных элементов интегральных микросхем лежит использование электрических переходов, общим свойством которых является наличие потенциального барьера на границе между полупроводниками. Полупроводники могут отличаться по типу проводимости (p или n), или иметь различные физические характеристики, например:

Электрический переход – переходный слой в полупроводниковом материале между двумя областями с различными типами электропроводности или разными значениями удельной электрической проводимости (одна из областей может быть металлом).

В зависимости от функционального назначения, уровня требуемых электрических параметров в диодах используются следующие типы выпрямляющих и омических электрических переходов.

Выпрямляющий переход – электрический переход, электрическое сопротивление которого при одном направлении тока больше, чем при другом.

Омический переход – электрический переход, электрическое сопротивление которого не зависит от направления тока в заданном диапазоне значений токов.

Электронно-дырочный переход (p-n-переход ) – электрический переход между двумя областями полупроводника, одна из которых имеет электропроводность n-типа, а другая p-типа.

Гетерогенный переход (гетеропереход ) – электрический переход, образованный в результате контакта полупроводников с различной шириной запрещенной зоны.

Гомогенный переход (гомопереход ) – электрический переход, образованный в результате контакта полупроводников с одинаковой шириной запрещенной зоны.

Переход Шотки – электрический переход, образованный в результате контакта между металлом и полупроводником.

Электронно-электронный переход (n-n + -переход ) – электрический переход между двумя областями полупроводника n-типа, обладающими различными значениями удельной электрической проводимости.

Дырочно-дырочный переход (p-p + -переход ) – электрический переход между двумя областями полупроводника p-типа, обладающими различными значениями удельной электрической проводимости. Знак «+» условно обозначает область с более высокой удельной электрической проводимостью

Формирование электронно-дырочного перехода происходит при контакте полупроводников без подачи внешнего напряжения. Атомы примесной проводимости, расположенные вдоль границ раздела жестко связаны с кристаллической решеткой и неподвижны.

Вследствие этого, диффузионный ток, между областями, образующийся в момент контакта, осуществит перенос электронов с внешних электронных оболочек атомов в в области n на незаполненные внешние оболочки атомов примеси в области p типа. Этот процесс можно рассматривать, как мгновенную ионизацию всех приграничных атомов примеси по обе стороны границы раздела, что приведет к образованию двух приграничных заряженных слоев противоположного знака по отношению к примесной проводимости в каждой из областей.

Эти дваприграничных слоя и образуют область электронно-дырочного перехода, обедненного основными носителями. Поле, образованное р-п переходом, направлено против основного поля, образованного исходными атомами р – и п- проводимости, что вызывает образование тока дрейфа дырок и электронов, направленного противоположно исходному току диффузии. Возникает равновесное состояние, которое характеризуется некоторой величиной поля E, шириной р-п перехода w , емкостью C и контактной разностью потенциалов φк.

Такие переходы могут быть cимметричными и несимметричными. При симметричных переходах области полупроводника имеют одинаковую концентрацию примеси, а в несимметричных - разную (концентрации примесей различаются на несколько порядков - в тысячи и десятки тысяч раз).

Границы переходов могут быть плавными или резкими, причем при плавных переходах технологически трудно обеспечить качественные вентильные свойства, которые необходимы для нормальной работы диодов и транзисторов, поэтому резкость границы играет существенную роль; в резком переходе концентрации примесей на границе раздела областей изменяются на расстоянии, соизмеримом с диффузионной длиной L .

При подаче внешнего напряжения для электронно-дырочного p-n-перехода характерны три состояния: равновесное; прямосмещенное); обратносмещенное).

Равновесное состояние p-n-перехода рассматривается при отсутствии напряжения на внешних зажимах. В этом случае потенциальный барьер, возникающий на границе двух областей, препятствует равномерному распределению носителей по всему объему полупроводника. Преодолеть этот барьер в состоянии лишь те основные носители, у которых достаточно энергии и они образуют через переход диффузионный ток I диф. Кроме того, в каждой области имеются неосновные носители, для которых поле p-n-перехода будет ускоряющим, эти носители образуют через переход

дрейфовый ток I др, который чаще называют тепловым или током насыщения I 0 . Суммарный ток через равновесный p-n-переход будет равен нулю:Свободное движение носителей через электронно-дырочный переход возможно при снижении потенциального барьера p-n-перехода. При этом происходит инжекция носителей заряда, т.е. их переход из области эмиттера в область базы в другую под действием внешнего напряжения. Область эмиттера легируется примесными атомами значительно сильнее, чем база. За счет разной концентрации примесных атомов в несимметричных переходах имеет место односторонняя инжекция: поток носителей из области с низкой концентрацией примесных атомов (из базы) очень слабый и им можно пренебречь.

При прямой полярности внешнего источника равновесное состояние перехода нарушается, так как поле этого источника, накладываясь на поле p-n-перехода, ослабляет его, запрещенная зона перехода уменьшается, потенциальный барьер снижается, сопротивление перехода резко уменьшается, диффузионная составляющая тока при этом возрастает в «е u / j t » раз и является функцией приложенного напряжения

где j t = kT/q - температурный потенциал (при комнатной температуре j t = 0,025В);

k - постоянная Больцмана;

T - температура;

q - заряд электрона.

Составляющая тока I о в идеализированном переходе при воздействии прямого внешнего напряжения остается практически без изменения. Следовательно, прямой результирующий ток через идеальный p-n-переход

(2.2.)

и окончательно

(2.3)

Уравнение (2.1) идеального p-n-перехода определяет основные вольтамперные характеристики полупроводниковых приборов.

При построении ВАХ перехода по (2.1) видно, что для идеального p-n-перехода при напряжениях, больших нуля, характерен режим заданного прямого тока, а не напряжения. Для реальной ВАХ при учете омического падения напряжения в слое базы, внешнее напряжение распределяется между p-n-переходом и слоем базы (сопротивление базы r б при малой площади перехода может составлять десятки Ом), поэтому уравнение (1.1), описывающее статическую ВАХ (рис. 2.1) реального перехода, можно записать следующим образом:

(2.4)

При обратной полярности внешнего источникаполярность внешнего источника напряжения совпадает с полярностью контактной разности потенциалов, потенциальный барьер p-n-перехода повышается, запрещенная зона перехода расширяется. При малых значениях обратного напряжения через p-n-переход будет наблюдаться движение и основных носителей, образующих ток, противоположно направленный току дрейфа:

(2.5)

Результирующий ток через p-n-переход при действии обратного напряжения

(2.6)

Уравнение (1.4) описывает обратную ветвь обратносмещенного перехода (рис. 22.1).

При U обр, большем 3j t , диффузионный ток через переход прекращается. При этом ток неосновных носителей продолжает течь через переход.

Отношение прямого и обратного тока называется коэффициентом выпрямления.

К выпр =I пр /I обр = exp U/j t ,(2.7)

Очевидно, что К выпр имеет очень большую величину и характеризует выпрямительные свойства р-п перехода

Обратный ток в общем случае носит название тока термогенерации и имеет большую величину; тогда как тепловой ток при комнатной температуре вообще не учитывается (в Si p-n переходе), так как он на 2-3 порядка меньше обратного тока. У германиевых переходов тепловой ток на 6 порядков больше, чем у кремниевых, поэтому в германиевых структурах этим током пренебрегать нельзя.

В реальном переходе наблюдается значительная зависимость тока неосновных носителей от приложенного напряжения. При действии обратного напряжения, когда расширяется запрещенная зона, область перехода сильно обедняется носителями, при этом процесс рекомбинации замедляется и процесс генерации оказывается неуравновешенным. Избыток генерируемых носителей захватывается электрическим полем и переносится в нейтральные слои (электроны в n-область, а дырки - в p-область). Эти потоки и образуют ток термогенерации. Этот ток слабо зависит от температуры и сильно зависит от величины приложенного обратного напряжения; уместно вспомнить упрощенную формулу зависимости скорости движения электрона в ускоряющем электрическом поле от приложенного напряжения

(2.8)

С увеличением приложенного напряжения скорость электрона увеличивается, растет число соударений его с атомами в узлах решетки (ударная ионизация), что приводит к появлению новых носителей заряда. Увеличение числа зарядов приводит к увеличению тока неосновных носителей, температура перехода увеличивается, а это, в свою очередь, приводит к нарушению ковалентных связей и росту носителей. Процесс может принять лавинообразный характер и привести к пробою p-n-перехода (рис. 1.1). Различают следующие виды пробоев:

туннельный (при напряженности поля перехода свыше 10 6 В/см, до точки «а»);

электрический (вызван ударной ионизацией, после точки «а»), этот тип пробоя иногда называют лавинным, при этом в переходе идут обратимые процессы и после снятия обратного напряжения он восстанавливает свои рабочие свойства. При электрическом пробое нарастание тока почти не вызывает изменения напряжения, что позволило использовать эту особенность характеристики для стабилизации напряжения;

тепловой возникает в результате сильного разогрева перехода (после точки «б»); процессы, которые идут при этом в переходе, необратимы, и рабочие свойства перехода после снятия напряжения не восстанавливаются (вот почему в справочной литературе строго ограничивается величина обратного напряжения на переходах диодов и транзисторов).

Рис. 2.1. ВАХ реального электронно-дырочного p-n-перехода

Анализируя прямую и обратные ветви вольтамперной характеристики, приходим к выводу, что p-n-переход хорошо проводит ток в прямосмещенном состоянии и очень плохо в обратносмещенном, следовательно, p-n-переход имеет вентильные свойства и его можно использовать для преобразования переменного напряжения в постоянное, например, в выпрямительных устройствах в блоках питания.