Использование tcp ip. SNMP протокол (основы)

Принципы работы интернет-протоколов TCP/IP по своей сути очень просты и сильно напоминают работу нашей советской почты.

Вспомните, как работает наша обычная почта. Сначала вы на листке пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Все, письмо дошло до получателя. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

На конверте письма будет написано примерно следующее:

Адрес отправителя:
От кого: Иванов Иван Иванович
Откуда: Ивантеевка, ул. Большая, д. 8, кв. 25

Адрес получателя:
Кому: Петров Петр Петрович
Куда: Москва, Усачевский переулок, д. 105, кв. 110

Теперь мы готовы рассмотреть взаимодействие компьютеров и приложений в сети Интернет (да и в локальной сети тоже) . Обратите внимание, что аналогия с обычной почтой будет почти полной.

Каждый компьютер (он же: узел, хост ) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP-адрес (Internet Protocol Address ), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255 ), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр. ). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP — к порту 21 и так далее.

Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом:

«адрес дома» = «IP компьютера»
«номер квартиры» = «номер порта»

В компьютерных сетях, работающих по протоколам TCP/IP, аналогом бумажного письма в конверте является пакет, который содержит собственно передаваемые данные и адресную информацию - адрес отправителя и адрес получателя, например:

Адрес отправителя (Source address): IP: 82.146.49.55 Port: 2049 Адрес получателя (Destination address): IP: 195.34.32.116 Port: 53 Данные пакета: ...

Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Обратите внимание, комбинация: «IP адрес и номер порта» — называется «сокет «.

В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер »: «клиент» запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер — 80-й порт и пр.

Большинство программ на домашнем компьютере являются клиентами — например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр.

Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

Повторение — мать учения: IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере .

Однако человеку запоминать цифровые IP адреса трудно — куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано — любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 23.45.67.89 можно использовать имя. А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Рассмотрим подробнее, как это работает. Ваш провайдер явно (на бумажке, для ручной настройки соединения) или неявно (через автоматическую настройку соединения) предоставляет вам IP адрес сервера имен (DNS ). На компьютере с этим IP адресом работает приложение (сервер имен), которое знает все доменные имена в Интернете и соответствующие им цифровые IP адреса. DNS-сервер «слушает» 53-й порт, принимает на него запросы и выдает ответы, например:

Запрос от нашего компьютера: «Какой IP адрес соответствует имени www.site.com?»
Ответ сервера: «23.45.67.89.»

Теперь рассмотрим, что происходит, когда в своем браузере вы набираете доменное имя (URL) этого сайта (www.site.com) и, нажав, в ответ от веб-сервера получаете страницу этого сайта.

Например:

IP адрес нашего компьютера: 91.76.65.216
Браузер: Internet Explorer (IE),
DNS сервер (стрима): 195.34.32.116 (у вас может быть другой), Страница, которую мы хотим открыть: www.site.com.

Набираем в адресной строке браузера доменное имя www.ofnet.ru и жмем. Далее операционная система производит примерно следующие действия:

Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53. Как было рассмотренно выше, порт 53 соответствует DNS-серверу — приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени.

Диалог примерно следующий:

— Какой IP адрес соответствует имени www.site.com?
— 23.45.67.89.

Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы www.ofnet.ru. 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт как правило не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия — http://www.site.com:80.

Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML — языке разметки текста, который понимает браузер.

Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем эти принципы надо понимать?

Например, вы заметили странное поведение своего компьютера — непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» — «Выполнить» — набираем cmd — «Ок»). В консоли набираем команду netstat -anи жмем. Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов. Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.

Также понимание принципов работы Интернета необходимо для правильной настройки (проще говоря брандмауэра:)). Эта программа (которая часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов — «своих» и «вражеских». Своих пропускать, чужих не пущать. Например, если ваш фаерволл сообщает вам, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Ну и самое главное - эти знания крайне полезны при общении с техподдержкой.

Напоследок приведу список портов , с которыми вам, вероятно, придется столкнуться:

135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты.

21 - порт FTP сервера.

25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента.

110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента.

80 - порт WEB-сервера.

3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:

127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера.
0.0.0.0 — так обозначаются все IP-адреса.
192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.
Что такое маска подсети и шлюз по умолчанию (роутер, маршрутизатор)?

(Эти параметры задаются в настройках сетевых подключений).

Все просто. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с советской почтой).

Напоследок рассмотрим что же означают непонятные термины:

TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).

IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. По-мимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту, т.е. приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.

TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.

TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).

UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).

Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.
Как посмотреть текущие соединения?

Текущие соединения можно посмотреть с помощью команды

Netstat -an

(параметр n указывает выводить IP адреса вместо доменных имен).

Запускается эта команда следующим образом:

«Пуск» — «Выполнить» — набираем cmd — «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем. Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов.

Например получаем:

Активные подключения Имя Локальный адрес Внешний адрес Состояние TCP 0.0.0.0:135 0.0.0.0:0 LISTENING TCP 91.76.65.216:139 0.0.0.0:0 LISTENING TCP 91.76.65.216:1719 212.58.226.20:80 ESTABLISHED TCP 91.76.65.216:1720 212.58.226.20:80 ESTABLISHED TCP 91.76.65.216:1723 212.58.227.138:80 CLOSE_WAIT TCP 91.76.65.216:1724 212.58.226.8:80 ESTABLISHED

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.

91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.

Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

Стек протоколов TCP/IP

Корпоративная сеть - это сложная система, состоящая из большого числа разнообразных устройств: компьютеров, концентраторов, маршрутизаторов , коммутаторов, системного прикладного программного обеспечения и т.д. Основная задача системных интеграторов и администраторов сетей состоит в том, чтобы эта система как можно лучше справлялась с обработкой потоков информации и позволяла получать правильные решения пользовательских задач в корпоративной сети. Прикладное программное обеспечение запрашивает сервис, обеспечивающий связь с другими прикладными программами. Этим сервисом является механизм межсетевого обмена.

Корпоративная информация, интенсивность ее потоков и способы ее обработки постоянно меняются. Примером резкого изменения технологии обработки корпоративной информации стал беспрецедентный рост популярности глобальной сети Internet за последние 2-3 года. Сеть Internet изменила способ представления информации, собрав на своих серверах все ее виды - текст, графику и звук. Транспортная система сети Internet существенно облегчила задачу построения распределенной корпоративной сети.

Соединение и взаимодействие в рамках одной мощной компьютерной сети явилось целью проектирования и создания семейства протоколов, названных в дальнейшем стеком протоколов TCP/IP (Transmission Control Protocol / Internet Protocol ) . Главной идеей стека является создание механизма межсетевого обмена.

Стек протоколов TCP/IP широко применяется во всем мире для объединения компьютеров в сети Internet . TCP / IP - это общее название, присвоенное семейству протоколов передачи данных, используемых для связи компьютеров и другого оборудования в корпоративной сети.

Основное достоинство стека протоколов TCP/IP в том, что он обеспечивает надежную связь между сетевым оборудованием от различных производителей. Это достоинство обеспечивается включением в состав TCP/IP отработанного в процессе эксплуатации набора коммуникационных протоколов с различными стандартизованными приложениями. Протоколы стека TCP/IP предоставляют механизм передачи сообщений, описывают детали форматов сообщений и указывают, как обрабатывать ошибки. Протоколы позволяют описать и понять процессы передачи данных, не учитывая тип оборудования, на котором эти процессы происходят.

История создания стека протоколов TCP/IP началась с момента, когда Министерство обороны США столкнулось с проблемой объединения большого числа компьютеров с различными операционными системами. Для этого в 1970 году был составлен набор стандартов. Протоколы, разработанные на базе этих стандартов, получили обобщенное название TCP/IP.

Стек протоколов TCP/IP был изначально предназначен для сети Advanced Research Project Agency Network (ARPANET ). ARPANET рассматривалась как экспериментальная распределенная сеть коммутации пакетов. Эксперимент по применению стека протоколов TCP/IP в этой сети закончился с положительными результатами. Поэтому стек протоколов был принят в промышленную эксплуатацию, а в дальнейшем был расширен и усовершенствовался в течение нескольких лет. Позже стек адаптировали для использования в локальных сетях. В начале 1980 года протокол стал использоваться как интегральная часть операционной системы Вег kley UNIX v 4.2. В этом же году появилась объединенная сеть Internet . Переход к технологии Internet был завершен в 1983 году, когда Министерство обороны США установило, что все компьютеры, присоединенные к глобальной сети, используют стек протоколов TCP/IP.

Стек протоколов TCP/IP предоставляет пользователям два основных сервиса , которые используют прикладные программы:

Дейтаграммное средство доставки пакетов . Это означает, что протоколы стека TCP/IP определяют маршрут передачи небольшого сообщения, основываясь только на адресной информации, находящейся в этом сообщении. Доставка осуществляется без установки логического соединения. Такой тип доставки делает протоколы TCP/IP адаптируемыми к широкому диапазону сетевого оборудования.

Надежное потоковое транспортное средство . Большинство приложений требует от коммуникационного программного обеспечения автоматического восстановления при ошибках передачи, потере пакетов или сбоях в промежуточных маршрутизаторах . Надежное транспортное средство позволяет устанавливать логическое соединение между приложениями, а затем посылать большие объемы данных по этому соединению.

Основными преимуществами стека протоколов TCP/IP являются:

Независимость от сетевой технологии. Стек протоколов TCP/IP не зависит от оборудования конечных пользователей, так как он только определяет элемент передачи - дейтаграмму - и описывает способ ее движения по сети.

Всеобщая связанность. Стек позволяет любой паре компьютеров, которые его поддерживают, взаимодействовать друг с другом. Каждому компьютеру назначается логический адрес, а каждая передаваемая дейтаграмма содержит логические адреса отправителя и получателя. Промежуточные маршрутизаторы используют адрес получателя для принятия решения о маршрутизации.

Межконцевые подтверждения. Протоколы стека TCP/IP обеспечивают подтверждение правильности прохождения информации при обмене между отправителем и получателем.

Стандартные прикладные протоколы. Протоколы TCP/IP включают в свой состав средства для поддержки наиболее часто встречающихся приложений, таких как электронная почта, передача файлов, удаленный доступ и т.д.

Резкий рост сети Internet и, естественно, ускоренное развитие стека протоколов TCP/IP потребовали от разработчиков создания серии документов, которые способствовали бы дальнейшему упорядоченному развитию протоколов. Организация Internet Activities Board (IAB ) разработала серию документов, называемых RFC (Request For Comments ). Некоторые RFC описывают сетевые сервисы или протоколы и их реализацию, другие документы описывают условия их применения. В том числе в RFC опубликованы стандарты стека протоколов TCP/IP. При этом следует иметь в виду, что стандарты TCP/IP всегда публикуются в виде документов RFC , но не все RFC определяют стандарты.

Документы RFC первоначально публиковались в электронном виде и могли комментироваться теми, кто принимал участие в их обсуждении. Документ мог претерпевать несколько изменений до тех пор, пока не будет достигнуто общее соглашение по его содержанию. Если документ при этом регламентировал новую идею, то ему присваивался номер, и он помещался к другим RFC . При этом каждому новому документу присваивается статус, регламентирующий необходимость его внедрения. Выход в свет нового документа RFC вовсе не означает, что все производители оборудования и программного обеспечения должны внедрять его в своей продукции. В приложении № 2 приведены описания некоторых документов RFC и их статусов.

1.Состояние стандартизации. Протокол может иметь несколько состояний:

стандарт на протокол утвержден;

стандарт на протокол предлагается к рассмотрению;

предлагается экспериментальный протокол;

протокол устарел и в настоящее время не используется.

2.Статус протокола. Протокол может иметь несколько статусов:

протокол требуется для внедрения;

протокол может внедряться производителем по выбору;

При эксплуатации сложной корпоративной сети возникает масса не связанных между собой проблем. Решить их функциональными возможностями одного протокола практически невозможно. Такой протокол должен был бы:

распознавать сбои в сети и восстанавливать ее работоспособность;

распределять пропускную способность сети и знать способы уменьшения потока данных при перегрузке;

распознавать задержки и потери пакетов, знать способ уменьшения ущерба от этого;

распознавать ошибки в данных и информировать о них прикладное программное обеспечение;

производить упорядоченное движение пакетов в сети.

Такое количество функциональных возможностей не под силу одному протоколу. Поэтому был создан набор взаимодействующих протоколов, названный стеком.

Так как стек протоколов TCP/IP был разработан до появления эталонной модели OSI , то соответствие его уровней уровням модели OSI достаточно условно. Структура стека протоколов TCP/IP приведена на рис. 1.1.

Рис. 1.1. Структура стека протоколов TCP/IP .

Рис. 1. 2. Путь передачи сообщений .

Теоретически посылка сообщения от одной прикладной программы к другой означает последовательную передачу сообщения вниз через соседние уровни стека у отправителя, передачу сообщений по уровню сетевого интерфейса (уровню IV ) или, в соответствии с эталонной моделью OSI , по физическому уровню, прием сообщения получателем и передачу его вверх через соседние уровни протокольного программного обеспечения. На практике взаимодействие уровней стека организовано гораздо сложнее. Каждый уровень принимает решение о корректности сообщения и производит определенное действие на основании типа сообщения или адреса назначения. В структуре стека протоколов TCP/IP имеется явный «центр тяжести» - это сетевой уровень и протокол IP в нем. Протокол IP может взаимодействовать с несколькими модулями протоколов более высокого уровня и несколькими сетевыми интерфейсами. То есть на практике процесс передачи сообщений от одной прикладной программы к другой будет выглядеть следующим образом: отправитель передает сообщение, которое на уровне III про токолом IP помещается в дейтаграмму и посылается в сеть (сеть 1). На промежуточных устройствах, например маршрутизаторах , дейтаграмма передается вверх до уровня протокола IP , который отправляет ее обратно вниз, в другую сеть (сеть 2). Когда дейтаграмма достигает получате ля, протокол IP выделяет сообщение и передает его на верхние уровни. Рис. 1.2 иллюстрирует данный процесс.

Структуру стека протоколов TCP/IP можно разделить на четыре уровня . Самый нижний - уровень сетевого интерфейса (уровень IV ) -соответствует физическому и канальному уровню модели OSI . В стеке протоколов TCP/IP этот уровень не регламентирован. Уровень сетево го интерфейса отвечает за прием дейтаграмм и передачу их по конкрет ной сети. Интерфейс с сетью может быть реализован драйвером уст ройства или сложной системой, которая использует свой протокол ка нального уровня (коммутатор, маршрутизатор ). Он поддерживает стан дарты физического и канального уровня популярных локальных сетей: Ethernet , Token Pang , FDDI и т.д. Для распределенных сетей поддержи ваются проколы соединений РРР и SLIP , а для глобальных сетей - протокол Х.25. Предусмотрена поддержка использования развивающейся технологии коммутации ячеек - ATM . Обычной практикой стало вклю чение в стек протоколов TCP/IP новых технологий локальных или рас пределенных сетей и регламентация их новыми документами RFC .

Сетевой уровень (уровень III ) - это уровень межсетевого взаимо действия. Уровень управляет взаимодействием между пользователями в сети. Он принимает от транспортного уровня запрос на посылку пакета от отправителя вместе с указанием адреса получателя. Уровень инкапсулирует пакет в дейтаграмму, заполняет ее заголовок и при необходи мости использует алгоритм маршрутизации. Уровень обрабатывает при ходящие дейтаграммы и проверяет правильность поступившей инфор мации. На стороне получателя программное обеспечение сетевого уровня удаляет заголовок и определяет, какой из транспортных протоколов будет обрабатывать пакет.

В качестве основного протокола сетевого уровня в стеке TCP/IP используется протокол IP , который и создавался с целью передачи ин формации в распределенных сетях. Достоинством протокола IP является возможность его эффективной работы в сетях со сложной топологи ей. При этом протокол рационально использует пропускную способ ность низкоскоростных линий связи. В основе протокола IP заложен дейтаграммный метод, который не гарантирует доставку пакета, но на правлен на ее осуществление.

К этому уровню относятся все протоколы, которые создают, под держивают и обновляют таблицы маршрутизации. Кроме того, на этом уровне функционирует протокол обмена информацией об ошибках меж ду маршрутизаторами в сети и отправителями.

Следующий уровень - транспортный (уровень II ) . Основной его задачей является обеспечение взаимодействия между прикладными про граммами. Транспортный уровень управляет потоком информации с обес печением надежной передачи. Для этого использован механизм подтвер ждения правильного приема с дублированием передачи утерянных или пришедших с ошибками пакетов. Транспортный уровень принимает дан ные от нескольких прикладных программ и посылает их более низкому уровню. При этом он добавляет дополнительную информацию к каждо му пакету, в том числе и значение вычисленной контрольной суммы.

На этом уровне функционирует протокол управления передачей данных TCP (Transmission Control Protocol ) и протокол передачи при кладных пакетов дейтаграммным методом UDP (User Datagram Protocol ). Протокол TCP обеспечивает гарантированную доставку данных за счет образования логических соединений между удаленными прикладными процессами. Работа протокола UDP аналогична работе протокола IP , но основной его задачей является выполнение функций связующего звена между сетевым протоколом и различными приложениями.

Самый верхний уровень (уровень I ) - прикладной . На нем реализованы широко используемые сервисы прикладного уровня. К ним от носятся: протокол передачи файлов между удаленными системами, про токол эмуляции удаленного терминала, почтовые протоколы и т.д. Каж дая прикладная программа выбирает тип транспортировки - либо не прерывный поток сообщений, либо последовательность отдельных со общений. Прикладная программа передает данные транспортному уров ню в требуемой форме.

Рассмотрение принципов функционирования стека протоколов TCP/IP целесообразно проводить, начиная с протоколов третьего уров ня. Это связано с тем, что протоколы более высоких уровней в своей работе опираются на функциональные возможности протоколов нижних уровней. Для понимания проблем маршрутизации в распределен ных сетях изучение протоколов рекомендуется проводить в следующей последовательности: IP , ARP , ICMP , UDP и TCP . Это связано с тем, что для доставки информации между удаленными системами в распределенной сети используется в той или иной степени все семейство сте ка протоколов TCP/IP.

Стек протоколов TCP/IP включает в свой состав большое число протоколов прикладного уровня. Эти протоколы выполняют различные функции, в том числе: управление сетью, передачу файлов, оказание распределенных услуг при использовании файлов, эмуляцию термина лов, доставку электронной почты и т.д. Протокол передачи файлов (File Transfer Protocol - FTP ) обеспечивает перемещение файлов между ком пьютерными системами. Протокол Telnet обеспечивает виртуальную тер минальную эмуляцию. Простой протокол управления сетью (Simple Network Management Protocol - SNMP ) является протоколом управле ния сетью, используемым для сообщений об аномальных условиях в сети и установления значений допустимых порогов в сети. Простой протокол передачи почты (Simple Mail Transfer Protocol - SMTP ) обеспечивает механизм передачи электронной почты. Эти протоколы и другие прило жения используют услуги стека TCP/IP для обеспечения пользователей базовыми сетевыми услугами.

Более подробно протоколы прикладного уровня стека протоколов TCP/IP в рамках данного материала не рассматриваются.

Перед рассмотрением протоколов стека TCP/IP введем базовые термины, определяющие названия фрагментов информации, передава емой между уровнями. Название блока данных, передаваемого по сети, зависит от того, на каком уровне стека протоколов он находится. Блок данных, с которым имеет дело сетевой интерфейс, называется кадром . Если блок данных находится между сетевым интерфейсом и сетевым уровнем, то он называется IP -дейтаграммой (или просто дейтаграм мой). Блок данных, циркулирующий между транспортным и сетевым уровнями и выше, называется IP -пакетом . На рис. 1.3 показано соот ветствие обозначений блоков данных уровням стека протоколов TCP/IP.


Рис. 1. 3. Обозначение фрагментов информации на уровнях стека TCP/IP.

Очень важно дополнить описание уровней стека протоколов TCP/IP описанием различия между передачей от отправителя непосредственно к получателю и передачей через несколько сетей. На рис. 4 показано различие между этими видами передач.


Рис. 1.4. Способы передачи информации.

При доставке сообщения через две сети с применением маршрутизатора оно использует два разных сетевых кадра (кадр 1 и кадр 2). Кадр 1 - для передачи от отправителя до маршрутизатора , кадр 2 - от маршрутизатора до получателя.

Прикладной и транспортный уровни могут устанавливать соединения, поэтому принцип разделения на уровни определяет, что пакет, принятый транспортным уровнем получателя, должен быть идентичен пакету, посланному транспортным уровнем отправителя.

Когда статья начинала формироваться, планировалось уложиться в одну, но к завершению, размеры статьи стали неподъемные, было решено разделить статью на две: теория сетей и работа сетевой подсистемы в линукс. Ну что ж, начнем с теории...

Стек протоколов TCP/IP

Собственно, что есть сеть ? Сеть - это более 2х компьютеров, объединенных между собой какими-то проводами каналами связи, в более сложном примере - каким-то сетевым оборудованием и обменивающиеся между собой информацией по определенным правилам. Эти правила "диктуются" стеком протоколов TCP/IP.

Transmission Control Protocol/Internet Protocol (Стек протоколов TCP/IP) - если сказать простым языком, это набор взаимодействующих протоколов разных уровней (можно дополнить, что каждый уровень взаимодействует с соседним, то есть состыковывается, поэтому и стек , имхо, так проще понять), согласно которым происходит обмен данными в сети. Каждый протокол - это набор правил, согласно которым происходит обмен данными. Итого, стек протоколов TCP/IP - это набор наборов правил Тут может возникнуть резонный вопрос: а зачем же иметь много протоколов? Неужели нельзя обмениваться всем по одному протоколу?

Все дело в том, что каждый протокол описывает строго отведенные ему правила. Кроме того, протоколы разделены по уровням функциональности, что позволяет работе сетевого оборудования и программного обеспечения становится гораздо проще, прозрачнее и выполнять "свой" круг задач. Для разделения данного набора протоколов по уровням была разработана модель сетевого взаимодействия OSI (англ. Open Systems Interconnection Basic Reference Model, 1978 г., она же - базовая эталонная модель взаимодействия открытых систем). Модель OSI состоит из семи различных уровней. Уровень отвечает за отдельный участок в работе коммуникационных систем, не зависит от рядом стоящих уровней – он только предоставляет определённые услуги. Каждый уровень выполняет свою задачу в соответствии с набором правил, называемым протоколом. Проиллюстрировать работу модели OSI можно следующим рисунком: Как передаются данные?

Из рисунка видно, что существует 7 уровней сетевого взаимодействия , которые делятся на: прикладной, представлений, сеансовый, транспортный, сетевой, канальный, физический . Каждый из уровней содержит свой набор протоколов. Список протоколов по уровням взаимодействия хорошо представлен в Википедии:

Сам стек протоколов TCP/IP развивался параллельно с принятием модели OSI и "не пересекался" с ней, в результате получилось небольшое разногласие в несоответствии стека протоколов и уровней модели OSI. Обычно, в стеке TCP/IP верхние 3 уровня (прикладной, представления и сеансовый ) модели OSI объединяют в один - прикладной . Поскольку в таком стеке не предусматривается унифицированный протокол передачи данных, функции по определению типа данных передаются приложению. Упрощенно интерпретацию стека TCP/IP относительно модели OSI можно представить так:

Данную модель сетевого взаимодействия еще называют модель DOD (от бурж. Department of Defense - Министерство обороны США). Итак, общее представление о сетевом взаимодействии рассмотрели. Для более глубокого понимания сути вопроса, могу посоветовать скачать и почитать книгу (Вито Амато "Основы организации сетей Cisco Т1 и Т2" ), ниже.

Адресация

В сети, построенной на стеке протоколов TCP/IP каждому хосту (компьютеру или устройству подключенному к сети) присвоен представляет собой 32-битовое двоичное число. Удобной формой записи IP-адреса (IPv4) является запись в виде четырёх десятичных чисел (от 0 до 255), разделённых точками, например, 192.168.0.1. В общем случае, IP-адрес делиться на две части : адрес сети (подсети) и адрес хоста :

Как видно из иллюстрации, есть такое понятие как сеть и подсеть . Думаю, что из значений слов понятно, что IP адреса делятся на сети, а сети в свою очередь делятся на подсЕти с помощью маски подсетИ (корректнее будет сказать: адрес хоста может быть разбит на подсЕти ). Изначально, все IP адреса были поделены на определенные группы (классы адресов/сети). И существовала классовая адресация, согласно которой сети делились на строго определенные изолированные сети:

Нетрудно посчитать, что всего в пространстве адресов IP - 128 сетей по 16 777 216 адресов класса A, 16384 сети по 65536 адресов класса B и 2 097 152 сети по 256 адресов класса C, а также 268 435 456 адресов многоадресной рассылки и 134 317 728 зарезервированных адресов. С ростом сети Интернет эта система оказалась неэффективной и была вытеснена CIDR (бесклассовой адресацией), при которой количество адресов в сети определяется маской подсети.

Существует так же классификация IP адресов, как "частные" и "публичные". Под частные (они же локальные сети) сети зарезервированы следующие диапазоны адресов:

  • 10.0.0.0 - 10.255.255.255 (10.0.0.0/8 или 10/8),
  • 172.16.0.0 - 172.31.255.255 (172.16.0.0/12 или 172.16/12),
  • 192.168.0.0 - 192.168.255.255 (192.168.0.0/16 или 192.168/16).
  • 127.0.0.0 - 127.255.255.255 зарезервировано для петлевых интерфейсов (не используется для обмена между узлами сети), т.н. localhost

Кроме адреса хоста в сети TCP/IP есть такое понятие как порт. Порт является числовой характеристикой какого-то системного ресурса. Порт выделяется приложению, выполняемому на некотором сетевом хосте, для связи с приложениями, выполняемыми на других сетевых хостах (в том числе c другими приложениями на этом же хосте). С программной точки зрения, порт есть область памяти, которая контролируется каким-либо сервисом.

Для каждого из протоколов TCP и UDP стандарт определяет возможность одновременного выделения на хосте до 65536 уникальных портов, идентифицирующихся номерами от 0 до 65535. Соответствие номера порта и службы, использующей этот номер можно посмотреть в файле /etc/services или на сайте http://www.iana.org/assignments/port-numbers. Весь диапазон портов делиться на 3 группы:

  • 0 до 1023, называемые привилегированными или зарезервированными (используются для системных и некоторых популярных программ)
  • 1024 - 49151 называются зарегистрированными портами.
  • 49151 - 65535 называются динамическими портами.

IP протокол , как видно из иллюстраций находится ниже TCP и UDP в иерархии протоколов и отвечает за передачу и маршрутизацию информации в сети. Для этого, протокол IP заключает каждый блок информации (пакет TCP или UDP) в другой пакет - IP пакет или дейтаграмма IP, который хранит заголовок о источнике, получателе и маршруте.

Если провести аналогию с реальным миром, сеть TCP/IP - это город. Названия улиц и проулков - это сети и подсети. Номера строений - это адреса хостов. В строениях, номера кабинетов/квартир - это порты. Точнее, порты - это почтовые ящики, в которые ожидают прихода корреспонденции получатели (службы). Соответственно, номера портов кабинетов 1,2 и т.п. обычно отдаются директорам и руководителям, как привилегированным, а рядовым сотрудникам достаются номера кабинетов с большими цифрами. При отправке и доставке корреспонденции, информация упаковывается в конверты (ip-пакеты ), на которых указывается адрес отправителя (ip и порт ) и адрес получателя (ip и порт ). Простым языком как-то так...

Следует отметить, что протокол IP не имеет представления о портах, за интерпретацию портов отвечает TCP и UDP, по аналогии TCP и UDP не обрабатывают IP-адреса.

Для того чтобы не запоминать нечитаемые наборы цифр в виде IP-адресов, а указывать имя машины в виде человекопонятного имени "придумана" такая служба как DNS (Domain Name Service) , которая заботится о преобразовании имен хостов в IP адрес и представляет собой огромную распределенную базу данных. Об этой службе я обязательно напишу в будущих постах, а пока нам достаточно знать, что для корректного преобразования имен в адреса на машине должен быть запущен демон named или система должна быть настроена на использование службы DNS провайдера.

Маршрутизация

Давайте рассмотрим (на иллюстрации) пример инфраструктуры с несколькими подсетями. Может возникнуть вопрос, а как же один компьютер соединиться с другим? Откуда он знает, куда посылать пакеты?

Для разрешения этого вопроса, сети между собой соединены шлюзами (маршрутизаторами ). Шлюз - это тот же хост, но имеющий соединение с двумя и более сетями, который может передавать информацию между сетями и направлять пакеты в другую сеть. На рисунке роль шлюза выполняет pineapple и papaya , имеющих по 2 интерфейса, подключенные к разным сетям.

Чтобы определить маршрут передачи пакетов , IP использует сетевую часть адреса (маску подсети ). Для определения маршрута, на каждой машине в сети имеется таблица маршрутизации (routing table), которая хранит список сетей и шлюзов для этих сетей. IP "просматривает" сетевую часть адреса назначения в проходящем пакете и если для этой сети есть запись в таблице маршрутизации, то пакет отправляется на соответствующий шлюз.

В Linux ядро операционной системы хранит таблицу маршрутизации в файле /proc/net/route . Просмотреть текущую таблицу маршрутизации можно командой netstat -rn (r - routing table, n - не преобразовывать IP в имена) или route . Первая колонка вывода команды netstat -rn (Destination - назначение) содержит адреса сетей (хостов) назначения . При этом, при указании сети, адрес обычно заканчивается на ноль. Вторая колонка (Gateway) - адрес шлюза для указанного в первой колонке хоста/сети. Третья колонка (Genmask) - маска подсети, для которой работает данный маршрут. Колонка Flags дает информацию об адресе назначения (U - маршрут работает (Up), N - маршрут для сети (network), H - маршрут для хоста и т.п.). Колонка MSS показывает число байтов, которое может быть отправлено за 1 раз, Window - количество фреймов, которое может быть отправлено до получения подтверждения, irtt - статистика использования маршрута, Iface - указывает сетевой интерфейс, используемый для маршрута (eth0, eth1 и т.п.)

Как видно в примере ниже, первая запись (строка) указана для сети 128.17.75, все пакеты для данной сети будут отправлены на шлюз 128.17.75.20, который является IP адресом самого хоста. Вторая запись - это маршрут по умолчанию , который применяется ко всем пакетам, посылаемым в сети, не указанные в данной таблице маршрутизации. Здесь маршрут лежит через хост papaya (IP 128.17.75.98), который можно считать дверью во внешний мир. Данный маршрут должен быть прописан на всех машинах сети 128.17.75, которые должны иметь доступ к другим сетям. Третья запись создана для петлевого интерфейса . Данный адрес используется, если машине необходимо подключиться к самой себе по протоколу TCP/IP. Последняя запись в таблице маршрутизации сделана для IP 128.17.75.20 и направляется на интерфейс lo, т.о. при подключении машины к самой себе на адрес 128.17.75.20, все пакеты будут посылаться на интерфейс 127.0.0.1.

Если хост eggplant пожелает послать пакет хосту zucchini , (соответственно, в пакете будет указан отправитель - 128.17.75.20 и получатель - 128.17.75.37), протокол IP определит на основании таблицы маршрутизации, что оба хоста принадлежат одной сети и пошлет пакет прямо в сеть, где zucchini его получит. Если более подробно сказать.. сетевая карта широковещательно кричит ARP-запросом "Кто такой IP 128.17.75.37, это кричит 128.17.75.20?" все машины, получившие данное послание - игнорируют его, а хост с адресом 128.17.75.37 отвечает "Это я и мой MAC - адрес такой-то...", далее происходит соединение и обмен данными на основе arp таблиц , в которых занесено соответствие IP-MAC адресов. "Кричит", то есть этот пакет посылается всем хостам, это происходит потому что, MAC-адрес получателя указан широковещательный адрес (FF:FF:FF:FF:FF:FF). Такие пакеты получают все хосты сети.

Пример таблицы маршрутизации для хоста eggplant :

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.20 255.255.255.0 UN 1500 0 0 eth0 default 128.17.75.98 0.0.0.0 UGN 1500 0 0 eth0 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.20 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Давайте рассмотрим ситуацию, когда хост eggplant хочет послать пакет хосту, например, pear или еще дальше?.. В таком случае, получатель пакета будет - 128.17.112.21, протокол IP попытается найти в таблице маршрутизации маршрут для сети 128.17.112, но данного маршрута в таблице нет, по этому будет выбран маршрут по умолчанию , шлюзом которого является papaya (128.17.75.98). Получив пакет, papaya отыщет адрес назначения в своей таблице маршрутизации:

# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 128.17.75.0 128.17.75.98 255.255.255.0 UN 1500 0 0 eth0 128.17.112.0 128.17.112.3 255.255.255.0 UN 1500 0 0 eth1 default 128.17.112.40 0.0.0.0 UGN 1500 0 0 eth1 127.0.0.1 127.0.0.1 255.0.0.0 UH 3584 0 0 lo 128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Из примера видно, что papaya подключена к двум сетям 128.17.75, через устройство eth0 и 128.17.112 через устройство eth1 . Маршрут по умолчанию , через хост pineapple , который в свою очередь, является шлюзом во внешнюю сеть.

Соответственно, получив пакет для pear , маршрутизатор papaya увидит, что адрес назначения принадлежит сети 128.17.112 и направит пакет в соответствии со второй записью в таблице маршрутизации.

Таким образом, пакеты передаются от маршрутизатора к маршрутизатору, пока не достигнут адреса назначения.

Стоит отметить, что в данных примерах маршруты

128.17.75.98 127.0.0.1 255.255.255.0 UH 3584 0 0 lo 128.17.112.3 127.0.0.1 255.255.255.0 UH 3584 0 0 lo

Не стандартные. И в современном linux вы такого не увидите.

Резюме

В данной статье я постарался как можно коротко и понятно описать основные понятия взаимодействия сетевой инфраструктуры на примере нескольких взаимосвязанных сетей, в следующей части я опишу работу сети в операционной системе Linux. Буду рад Вашим комментариям и дополнениям.

Доброго времени суток, дорогие читатели.
По многочисленным просьбам сегодня я публикую для Вас статью, которая познакомит Вас с основами основ терминов компьютерной сети, а именно:

  • Сетевые протоколы - что это за страшные названия и с чем их едят
  • UDP, TCP, ICMP , - что, зачем и в чем разница
  • IP -адрес, - у всех есть, но не все знают нафига эта штука:-)
  • Маска адреса (подсеть)
  • Шлюз (gateway)
  • Несколько слов о таблицах маршрутизации
  • Порты, - что это на самом деле
  • MAC -адрес

Примерно так.

Статья, думаю, будет полезна всем от мала до велика, ибо содержит не столько набор странных непонятных действий или слов, сколько блок доступным языком изложенной информации, которая, как минимум, даст Вам понимание как вообще это всё работает и зачем это нужно. Поехали.

Сетевые протоколы TCP/IP, NWLink IPX/SPX, NetBEUI

Давайте начнем с того, что вообще такое сетевой протокол и с чем его едят.
Сетевой протокол - это набор программно реализованных правил общения между компьютерами. Этакий язык, на котором компьютеры разговаривают друг с другом и передают информацию. Ранее компьютеры были, так сказать, многоязычны и в старых версиях Windows использовался целый набор протоколов, - TCP/IP, NWLink IPX/SPX, NetBEUI . Ныне же пришли к общей договоренности, и стандартом стало использование исключительно протокола TCP/IP , а посему речь далее пойдет именно о нем.

Когда говорят о TCP/IP , то обычно подразумевают под этим именем множество различных.. правил или, скажем, стандартов, которые прописаны с использованием (или под использование) этого протокола. Так, например, есть правила, по которым осуществляется обмен сообщениями между почтовыми серверами и есть правила, по которым конечный пользователь получает в свой ящик письма. Имеются правила для проведения видео-конференций и правила для организации "телефонных" переговоров по Интернету. Фактически, это даже не то чтобы правила.. Скорее этакая грамматика, что ли. Ну знаете, в английском одна структура построения диалогов, в французском другая.. Вот и в TCP/IP нечто подобное, т.е. некая связка различных грамматических правил представляет собой как раз цельный протокол TCP/IP или, точнее говоря, стек протоколов TCP/IP .

Сетевые протоколы UDP, TCP, ICMP

В рамках протокола TCP/IP для передачи данных используются протоколы - TCP и UDP . Многие наверняка слышали, что есть порты как TCP , так и UDP , но не все знают в чем разница и что это вообще. И так..

Передача данных по протоколу TCP (Transmission Control Protocol - Протокол Управления Передачей) предусматривает наличие подтверждений получения информации. "-Ну, мол, - получил? -Получил!" Если же передающая сторона не получит в установленные сроки необходимого подтверждения, то данные будут переданы повторно. Поэтому протокол TCP относят к протоколам, предусматривающим соединение, а UDP (User Datagram Protocol - Протокол Пользовательских Датаграмм) - нет. UDP применяется в тех случаях, когда не требуется подтверждения приема (например, DNS-запросы или IP-телефония (яркий представитель которой, - Skype)). То есть разница заключается в наличии подтверждения приема. Казалось бы "Всего то!", но на практике это играет важную роль.

Есть еще так же протокол ICMP (Internet Control Message Protocol - межсетевой протокол управляющих сообщений), который используется для передачи данных о параметрах сети. Он включает в себя служебные типы пакетов, таки как ping, distination unreachable, TTL и пр.

Что такое IP-адрес

У всех он есть, но не все имеют представление что за адрес такой и почему вообще без него нельзя. Рассказываю.

IP -адрес - 32 -х битное число, используемое для идентификации компьютера в сети. Адрес принято записывать десятичными значениями каждого октета этого числа с разделением полученных значений точками. Например, 192.168.101.36

IP- адреса уникальны, - это значит, что каждый компьютер имеет свое собственное сочетание цифр, и в сети не может быть двух компьютеров с одинаковыми адресами. IP -адреса распределяются централизованно, интернет-провайдеры делают заявки в национальные центры в соответствии со своими потребностями. Полученные провайдерами диапазоны адресов распределяются дальше между клиентами. Клиенты, в свою очередь, сами могут выступать в роли провайдера и распределять полученные IP -адреса между субклиентами и т.д. При таком способе распределения IP -адресов компьютерная система точно знает "расположение" компьютера, имеющего уникальный IP -адрес; - ей достаточно переслать данные в сеть "владельца", а провайдер в свою очередь проанализирует пункт назначения и, зная, кому отдана эта часть адресов, отправит информацию следующему владельцу поддиапазона IP -адресов, пока данные не поступят на компьютер назначения.

Для построения же локальных сетей выделены спец.диапазоны адресов. Это адреса 10.x.x.x , 192.168.x.x , 10.x.x.x , c 172.16.x.x по 172.31.x.x , 169.254.x.x , где под x - имеется ввиду любое число это от 0 до 254 . Пакеты, передаваемые с указанных адресов, не маршрутизируется, иными словами, попросту не пересылаются через Интернет, а поэтому в различных локальных сетях компьютеры могут иметь совпадающие адреса из указанных диапазонов. Т.е., в компании ООО "Рога и копыта " и ООО "Вася и компания " могут находится два компьютера с адресами 192.168.0.244 , но не могут, скажем, с адресами 85.144.213.122 , полученными от провайдера интернета, т.к. в интернете не может быть два одинаковых IP -адреса. Для пересылки информации с таких компьютеров в Интернет и обратно используются спец.программы и устройства, которые заменяют локальные адреса реальными при работе с интернетом. Иными словами, данные в Сеть пересылаются с реального IP -адреса, а не с локального. Этот процесс происходит не заметно для пользователя и называется трансляцией адресов. Хочется так же упомянуть, что в рамках одной сети, скажем, компании, ООО "Рога и копыта ", не может быть два компьютера с одним локальным IP-адресом, т.е., в указанном выше примере имелось ввиду, что один компьютер с адресом 192.168.0.244 в одной компании, второй с таким же адресом - в другой. В одной же компании два компьютера с адресом 192.168.0.244 попросту не уживутся.

Вы наверняка слышали такие термины как внешний IP и внутренний IP , постоянный (статический IP) и переменный (динамический) IP . В двух словах о них:

  • внешний IP - это как раз тот самый IP , который выдает Вам провайдер, т.е. Ваш уникальный адрес в интернете, например, - 85.144.24.122
  • внутренний IP , - это локальный IP , т.е. Ваш IP в локальной сети, например, - 192.168.1.3
  • статический IP - это IP , который не меняется с каждым подключением, т.е. закреплен за Вами твердо и навсегда
  • динамический IP , - это плавающий IP -адрес, который меняется с каждым подключением

Тип Вашего IP (статический или динамический) зависит от настроек провайдера.

Что такое маска адреса (подсеть)

Понятие подсети введено, чтобы можно было выделить часть IP -адресов одной организации, часть другой и тд. Подсеть представляет собой диапазон IP-адресов, которые считаются принадлежащими одной локальной сети. При работе в локальной сети информация пересылается непосредственно получателю. Если данные предназначены компьютеры с IP-адресом, не принадлежащим локальной сети, то к ним применяются специальные правила для вычисления маршрута для пересылки из одной сети в другую.

Маска - это параметр, который сообщает программному обеспечению о том, сколько компьютеров объединено в данную группу (подсеть). Маска адреса имеет такую же структуру как и сам IP-адрес: это набор из четырех групп чисел, каждое из которых может быть в диапазоне от 0 до 255 . При этом, чем меньше значение маски, тем больше компьютеров объединено в данную подсеть. Для сетей небольших компаний маска обычно имеет вид 255.255.255.x (например, 255.255.255.224). Маска сети присваивается компьютеру одновременно с IP-адресом. Так, например, сеть 192.168.0.0 с маской 255.255.255.0 может содержать в себе компьютеры с адресами от 192.168.0.1 до 192.168.254 192.168.0.0 с маской 255.255.255.128 допускает адреса от 192.168.0.1 до 192.168.0.127 . Думаю, смысл понятен. Как правило сети с небольшим возможным числом компьютеров используются провайдерами с целью экономии IP-адресов. Например, клиенту, может быть назначен адрес с маской 255.255.255.252 . Такая подсеть содержит в себе только два компьютера.

После того как компьютер получил IP-адрес и ему стало известно значение маски подсети, программа может начать работу в данной локальной подсети. Однако же, чтобы обмениваться информацией с другими компьютерами в глобальной сети, необходимо знать правила, куда пересылать информацию для внешней сети. Для этого служит такая характеристика как адрес шлюза (Gateway).

Что такое Шлюз (Gateway)

Шлюз - это устройство (компьютер или маршрутизатор), которое обеспечивает пересылку информации между различными IP-подсетями. Если программа определяет (по IP и маске), что адрес назначения не входит в состав локальной подсети, то она отправляет эти данные на устройство, выполняющее функции шлюза. В настройках протокола указывают IP-адрес такого устройства.

Хотите знать и уметь, больше и сами?

Мы предлагаем Вам обучение по направлениям: компьютеры, программы, администрирование, сервера, сети, сайтостроение, SEO и другое. Узнайте подробности сейчас!

Для работы только в локальной сети шлюз может не указываться.

Для индивидуальных пользователей, подключающихся к Интернету, или для небольших предприятий, имеющих единственный канал подключения, в системе должен быть только один адрес шлюза, - это адрес того устройства, которое имеет подключение к Интернету. При наличии нескольких маршрутов будет существовать несколько шлюзов. В этом случае для определения пути передачи данных используется таблица маршрутизации.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP -сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Что такое сетевые порты

При передаче данных кроме IP -адресов отправителя и получателя пакет информации содержит в себе номера портов. Пример: 192.168.1.1:80 , - в данном случае 80 - это номер порта. Порт - это некое число, которое используется при приеме и передаче данных для идентификации процесса (программы), который должен обработать данные. Так, если пакет послан на 80 -й порт, то это свидетельствует, что информация предназначена серверу HTTP .

Номера портов с 1 -го до 1023 -й закреплены за конкретными программами (так называемые well-known-порты). Порты с номерами 1024 -65 535 могут быть использованы в программах собственной разработки. При этом возможные конфликты должны решаться самими программами путем выбора свободного порта. Иными словами, порты будут распределяться динамически: возможно, что при следующем старте программа выберет иное значение порта, если, конечно, Вы вручную через настройки не задавали ей порт.

Что есть MAC-адрес

Дело в том, что пересылаемые пакеты в сети адресуются компьютерам не по их именам и не на IP -адрес. Пакет предназначается устройству с конкретным адресом, который и называется MAC -адресом.

MAC-адрес - это уникальный адрес сетевого устройства, который заложен в него изготовителем оборудования, т.е. это этакий проштампованный номер Вашей сетевой карты. Первая половина MAC -адрес представляет собой идентификатор изготовителя, вторая - уникальный номер данного устройства.

Как правило MAC -адрес бывает требуется для идентификации, скажем, у провайдера (если провайдер использует привязку по мак-адресу вместо логина-пароля) или при настройке маршрутизатора.

Где посмотреть все сетевые настройки

Чуть не забыл сказать пару слов о том где можно поглядеть и поменять всё это.

Протокол TCP/IP или как работает Интернет для чайников:
В основе работы глобальной сети Интернет лежит набор (стек) протоколов TCP/IP - это простой набор хорошо известных правил обмена информацией.
Вам приходилось наблюдать панику и полную беспомощность бухгалтера при смене версии офисного софта - при малейшем изменении последовательности кликов мышки, требуемых для выполнения привычных действий? Или приходилось видеть человека, впадающего в ступор при изменении интерфейса рабочего стола? Вот для того, чтобы не быть лохом необходимо понимание сути. Основе информации дают вам возможность чувствовать себя уверенно и свободно - быстро решать проблемы, грамотно формулировать вопросы и нормально общаться с техподдержкой.

Принципы работы интернет-протоколов TCP/IP по своей сути просты и напоминают работу советской почты:
Сначала вы пишете письмо, затем кладете его в конверт, заклеиваете, на обратной стороне конверта пишете адреса отправителя и получателя, а потом относите в ближайшее почтовое отделение. Далее письмо проходит через цепочку почтовых отделений до ближайшего почтового отделения получателя, откуда оно тетей-почтальоном доставляется до по указанному адресу получателя и опускается в его почтовый ящик (с номером его квартиры) или вручается лично. Когда получатель письма захочет вам ответить, то он в своем ответном письме поменяет местами адреса получателя и отправителя, и письмо отправиться к вам по той же цепочке, но в обратном направлении.

Адрес отправителя:
От кого: Иванов Иван Иванович
Откуда: Ивантеевка, ул. Большая, д. 8, кв. 25
Адрес получателя:
Кому: Петров Петр Петрович
Куда: Москва, Усачевский переулок, д. 105, кв. 110

Рассмотрим взаимодействие компьютеров и приложений в сети Интернет, да и в локальной сети тоже. Аналогия с обычной почтой будет почти полной.
Каждый компьютер (он же: узел, хост) в рамках сети Интернет тоже имеет уникальный адрес, который называется IP (Internet Pointer), например: 195.34.32.116. IP адрес состоит из четырех десятичных чисел (от 0 до 255), разделенных точкой. Но знать только IP адрес компьютера еще недостаточно, т.к. в конечном счете обмениваются информацией не компьютеры сами по себе, а приложения, работающие на них. А на компьютере может одновременно работать сразу несколько приложений (например почтовый сервер, веб-сервер и пр.). Для доставки обычного бумажного письма недостаточно знать только адрес дома - необходимо еще знать номер квартиры. Также и каждое программное приложение имеет подобный номер, именуемый номером порта. Большинство серверных приложений имеют стандартные номера, например: почтовый сервис привязан к порту с номером 25 (еще говорят: «слушает» порт, принимает на него сообщения), веб-сервис привязан к порту 80, FTP - к порту 21 и так далее. Таким образом имеем следующую практически полную аналогию с нашим обычным почтовым адресом: "адрес дома" = "IP компьютера", а "номер квартиры" = "номер порта"

Адрес отправителя (Source address):
IP: 82.146.49.55
Port: 2049
Адрес получателя (Destination address):
IP: 195.34.32.116
Port: 53
Данные пакета:
...
Конечно же в пакетах также присутствует служебная информация, но для понимания сути это не важно.

Комбинация "IP адрес и номер порта" - называется "сокет" .
В нашем примере мы с сокета 82.146.49.55:2049 посылаем пакет на сокет 195.34.32.116:53, т.е. пакет пойдет на компьютер, имеющий IP адрес 195.34.32.116, на порт 53. А порту 53 соответствует сервер распознавания имен (DNS-сервер), который примет этот пакет. Зная адрес отправителя, этот сервер сможет после обработки нашего запроса сформировать ответный пакет, который пойдет в обратном направлении на сокет отправителя 82.146.49.55:2049, который для DNS сервера будет являться сокетом получателя.

Как правило взаимодействие осуществляется по схеме «клиент-сервер»: "клиент" запрашивает какую-либо информацию (например страницу сайта), сервер принимает запрос, обрабатывает его и посылает результат. Номера портов серверных приложений общеизвестны, например: почтовый SMTP сервер «слушает» 25-й порт, POP3 сервер, обеспечивающий чтение почты из ваших почтовых ящиков «слушает» 110-порт, веб-сервер - 80-й порт и пр. Большинство программ на домашнем компьютере являются клиентами - например почтовый клиент Outlook, веб-обозреватели IE, FireFox и пр. Номера портов на клиенте не фиксированные как у сервера, а назначаются операционной системой динамически. Фиксированные серверные порты как правило имеют номера до 1024 (но есть исключения), а клиентские начинаются после 1024.

IP - это адрес компьютера (узла, хоста) в сети, а порт - номер конкретного приложения, работающего на этом компьютере. Однако человеку запоминать цифровые IP адреса трудно - куда удобнее работать с буквенными именами. Ведь намного легче запомнить слово, чем набор цифр. Так и сделано - любой цифровой IP адрес можно связать с буквенно-цифровым именем. В результате например вместо 82.146.49.55 можно использовать имя www.ofnet.ru. А преобразованием доменного имени в цифровой IP адрес занимается сервис доменных имен - DNS (Domain Name System).

Набираем в адресной строке браузера доменное имя www.yandex.ru и жмем. Далее операционная система производит следующие действия:
- Отправляется запрос (точнее пакет с запросом) DNS серверу на сокет 195.34.32.116:53.
Порт 53 соответствует DNS-серверу - приложению, занимающемуся распознаванием имен. А DNS-сервер, обработав наш запрос, возвращает IP-адрес, который соответствует введенному имени. Диалог следующий: Какой IP адрес соответствует имени www.yandex.ru? Ответ: 82.146.49.55.
- Далее наш компьютер устанавливает соединение с портом 80 компьютера 82.146.49.55 и посылает запрос (пакет с запросом) на получение страницы www.yandex.ru. 80-й порт соответствует веб-серверу. В адресной строке браузера 80-й порт не пишется, т.к. используется по умолчанию, но его можно и явно указать после двоеточия - http://www.yandex.ru:80 .
- Приняв от нас запрос, веб-сервер обрабатывает его и в нескольких пакетах посылает нам страницу в на языке HTML - языке разметки текста, который понимает браузер. Наш браузер, получив страницу, отображает ее. В результате мы видим на экране главную страницу этого сайта.

Зачем мне это знать?
Например, вы заметили странное поведение своего компьютера - непонятная сетевая активность, тормоза и пр. Что делать? Открываем консоль (нажимаем кнопку «Пуск» - «Выполнить» - набираем cmd - «Ок»). В консоли набираем команду netstat -an и жмем. Эта утилита отобразит список установленных соединений между сокетами нашего компьютера и сокетами удаленных узлов.
Если мы видим в колонке «Внешний адрес» какие-то чужие IP адреса, а через двоеточие 25-й порт, что это может означать? (Помните, что 25-й порт соответствует почтовому серверу?) Это означает то, что ваш компьютер установил соединение с каким-то почтовым сервером (серверами) и шлет через него какие-то письма. И если ваш почтовый клиент (Outlook например) в это время не запущен, да если еще таких соединений на 25-й порт много, то, вероятно, в вашем компьютере завелся вирус, который рассылает от вашего имени спам или пересылает номера ваших кредитных карточек вкупе с паролями злоумышленникам.
Также понимание принципов работы Интернета необходимо для правильной настройки файерволла (брандмауэра) - программа (часто поставляется вместе с антивирусом), предназначенна для фильтрации пакетов "своих" и "вражеских". Например, ваш фаерволл сообщает, что некто хочет установить соединение с каким-либо портом вашего компьютера. Разрешить или запретить?

Все эти знания крайне полезны при общении с техподдержкой - список портов , с которыми вам придется столкнуться:
135-139 - эти порты используются Windows для доступа к общим ресурсам компьютера - папкам, принтерам. Не открывайте эти порты наружу, т.е. в районную локальную сеть и Интернет. Их следует закрыть фаерволлом. Также если в локальной сети вы не видите ничего в сетевом окружении или вас не видят, то вероятно это связано с тем, что фаерволл заблокировал эти порты. Таким образом для локальной сети эти порты должны быть открыты, а для Интернета закрыты.
21 - порт FTP сервера.
25 - порт почтового SMTP сервера. Через него ваш почтовый клиент отправляет письма. IP адрес SMTP сервера и его порт (25-й) следует указать в настройках вашего почтового клиента.
110 - порт POP3 сервера. Через него ваш почтовый клиент забирает письма из вашего почтового ящика. IP адрес POP3 сервера и его порт (110-й) также следует указать в настройках вашего почтового клиента.
80 - порт WEB-сервера.
3128, 8080 - прокси-серверы (настраиваются в параметрах браузера).

Несколько специальных IP адресов:
127.0.0.1 - это localhost, адрес локальной системы, т.е. локальный адрес вашего компьютера.
0.0.0.0 - так обозначаются все IP-адреса.
192.168.xxx.xxx - адреса, которые можно произвольно использовать в локальных сетях, в глобальной сети Интернет они не используются. Они уникальны только в рамках локальной сети. Адреса из этого диапазона вы можете использовать по своему усмотрению, например, для построения домашней или офисной сети.

Что такое маска подсети и шлюз по умолчанию , он же роутер и маршрутизатор? Эти параметры задаются в настройках сетевых подключений. Компьютеры объединяются в локальные сети. В локальной сети компьютеры напрямую «видят» только друг друга. Локальные сети соединяются друг с другом через шлюзы (роутеры, маршрутизаторы). Маска подсети предназначена для определения - принадлежит ли компьютер-получатель к этой же локальной сети или нет. Если компьютер-получатель принадлежит этой же сети, что и компьютер-отправитель, то пакет передается ему напрямую, в противном случае пакет отправляется на шлюз по умолчанию, который далее, по известным ему маршрутам, передает пакет в другую сеть, т.е. в другое почтовое отделение (по аналогии с бумажной почтой). Итак:
TCP/IP - это название набора сетевых протоколов. На самом деле передаваемый пакет проходит несколько уровней. (Как на почте: сначала вы пишете писмо, потом помещаете в конверт с адресом, затем на почте на нем ставится штамп и т.д.).
IP протокол - это протокол так называемого сетевого уровня. Задача этого уровня - доставка ip-пакетов от компьютера отправителя к компьютеру получателю. Помимо собственно данных, пакеты этого уровня имеют ip-адрес отправителя и ip-адрес получателя. Номера портов на сетевом уровне не используются. Какому порту=приложению адресован этот пакет, был ли этот пакет доставлен или был потерян, на этом уровне неизвестно - это не его задача, это задача транспортного уровня.
TCP и UDP - это протоколы так называемого транспортного уровня. Транспортный уровень находится над сетевым. На этом уровне к пакету добавляется порт отправителя и порт получателя.
TCP - это протокол с установлением соединения и с гарантированной доставкой пакетов. Сначала производится обмен специальными пакетами для установления соединения, происходит что-то вроде рукопожатия (-Привет. -Привет. -Поболтаем? -Давай.). Далее по этому соединению туда и обратно посылаются пакеты (идет беседа), причем с проверкой, дошел ли пакет до получателя. Если пакет не дошел, то он посылается повторно («повтори, не расслышал»).
UDP - это протокол без установления соединения и с негарантированной доставкой пакетов. (Типа: крикнул что-нибудь, а услышат тебя или нет - неважно).
Над транспортным уровнем находится прикладной уровень. На этом уровне работают такие протоколы, как http, ftp и пр. Например HTTP и FTP - используют надежный протокол TCP, а DNS-сервер работает через ненадежный протокол UDP.

Как посмотреть текущие соединения? - с помощью команды netstat -an (параметр n указывает выводить IP адреса вместо доменных имен). Запускается эта команда следующим образом: «Пуск» - «Выполнить» - набираем cmd - «Ок». В появившейся консоли (черное окно) набираем команду netstat -an и жмем. Результатом будет список установленных соединений между сокетами нашего компьютера и удаленных узлов. Например получаем:

В этом примере 0.0.0.0:135 - означает, что наш компьютер на всех своих IP адресах слушает (LISTENING) 135-й порт и готов принимать на него соединения от кого угодно (0.0.0.0:0) по протоколу TCP.
91.76.65.216:139 - наш компьютер слушает 139-й порт на своем IP-адресе 91.76.65.216.
Третья строка означает, что сейчас установлено (ESTABLISHED) соединение между нашей машиной (91.76.65.216:1719) и удаленной (212.58.226.20:80). Порт 80 означает, что наша машина обратилась с запросом к веб-серверу (у меня, действительно, открыты страницы в браузере).

(с) Вольные сокращения статьи мои.
(с) Дубровин Борис